An Analysis of the Projected Manpower Requirements for the Shuttle Processing Contract

NSTS Engineering Integration Office Astronaut Office

February 1988

National Aeronautics and Space Administration

Lyndon B. Johnson Space Center Houston, Texas

NATIONAL SPACE TRANSPORTATION SYSTEM

AN ANALYSIS OF THE PROJECTED MANPOWER REQUIREMENTS FOR THE SHUTTLE PROCESSING CONTRACT

TEAM MEMBER CONCURRENCE

John W. Harden-KSCHTM

Norman B. Starkey-HQS-MOK

Concurrence: Richard P. Schneider-HQS-BRC

CONTENTS

Section		Page
1	EXECUTIVE SUMMARY	1-1
2	PURPOSE	2-1
3	<u>SCOPE</u>	3-1
4 4.1 4.2 4.3	METHODOLOGY TEAM COMPOSITION ACTIVITIES APPROACH	4-1 4-1 4-1 4-1
5 5.1 5.2 5.3 5.4 5.5	DISCUSSION OF SHUTTLE PROCESSING CONTRACT BACKGROUND CONTRACT SCOPE CONTRACT FORM REVIEWS OF SPC PERFORMANCE LSOC MANPOWER ESTIMATES	5-1 5-1 5-1 5-2 5-2 5-3
6 6.1 6.2 6.3 6.4	CHARACTERIZATION OF THE WORK FORCE OVERVIEW ASSUMPTIONS USED TO TAILOR THE WORKFORCE DISTRIBUTION OF THE WORKFORCE ACROSS FACILITIES SENSITIVITY OF WORKFORCE REQUIREMENTS TO FLIGHT	6-1 6-1 6-3
6.5	THE RELATIONSHIP OF SHIFTING ASSUMPTIONS TO	6-3
6.6 6.7	MANPOWER EFFECTS OF UNPLANNED WORK CHANGES IN THE OPERATION SINCE STS 51-L	6-7 6-11 6-12
7 7.1 7.2 7.3 7.4 7.5 7.6 7.6.1 7.6.2 7.7 7.8 7.9 7.9 7.10 7.11	DETAILED DESCRIPTION OF THE WORK FORCE OVERVIEW OF TOTAL CONTRACT AND DIVISIONAL BREAKDOWN XX-XX BUSINESS MANAGEMENT 11-XX SHUTTLE DATA SYSTEMS 15-XX SHUTTLE/PAYLOAD INTEGRATION 16-XX OPERATIONS CONTROL 17-XX SHUTTLE AND GROUND SUPPORT ENGINEERING Process Engineering Ground Systems Design Engineering (Sustaining Engineering) 2X-XX KSC OPERATIONS 24-XX MORTON THIOKOL 3X-XX SUPPORT OPERATIONS Grumman Technical Services 40-XX LOGISTICS 50-XX SAFETY, RELIABILITY, MAINTAINABILITY, AND	7-1 7-1 7-7 7-26 7-31 7-46 7-46 7-46 7-61 7-71 7-77 7-95
	QUALITY ASSURANCE	7-10

	:	JSC 22662
Section		
8	POTENTIAL TURGATO TO THE	Page
8.1	POTENTIAL THREATS TO PROJECTED MANNING LEVELS SUSTAINING ENGINEERING	8-1
8.2	ooonitiitiid Liidliif FRINI.	8-1
8.3	PROCESS ENGINEERING	8-1
8.4	LOGISTICS	8-1
8.5	SAFETY, RELIABILITY AND QUALITY ASSURANCE	8-2
8.6		8-2
8.7	OPERATIONS (OPF)	8-2
8.8	SHITTLE /DAVIDAD TATEODATION	8-3
_		8-3
9	<u>FINDINGS</u>	
		9-1
10	CONCLUSION	
		10-1
Appendix A	ACRONYMS	
		A-1

TABLES

Table		Page
1-1	Changes in manpower levels from pre-STS 51-L	1-2
6-1 6-2	Space Shuttle Orbiter processing rate SPC personnel distribution by site	6-2 6-4
6-3	SPC manpower bottoms-up review shifting assumptions for FY 1990	6-6 6-8
6-4	SPC manning levers	• •
7-1 7-2	SPC manpower bottoms-up analysis Business Management manpower bottoms-up analysis	7-3 7-10 7-11
7-3	Business Management breakdown by department	7-11
7-4	Shuttle Data Systems manpower bottoms-up analysis .	7-28 7-29
7-5	Shuttle Data Systems breakdown by department	1-29
7-6	Shuttle/Payload Integration manpower bottoms-up analysis	7-33
7-7	Shuttle/Payload Integration breakdown by department	7-34
7-8	Operations Control manpower bottoms-up analysis	7-39
7-8 7-9	Operations Control breakdown by department	7-40
7-10	Shuttle and Ground Support Engineering manpower	7-50
7-11	Shuttle and Ground Support Engineering breakdown by	7-51
7-12	department	7-64
7-13	KSC Operations breakdown by department	7-65
7-14	Morton Thiokol manpower bottoms-up analysis	7-73
7-15	Morton Thiokol breakdown by department	7-74
7-16	Support Operations manpower bottoms-up analysis	7-81
7-17	Support Operations breakdown by department	7-84
7-18	Logistics mannower bottoms-up analysis	7-97
7-19	logistics breakdown by department	7-98
7-20	Safety Reliability, Maintainability, and Quality	
	Assurance manpower bottoms-up analysis Safety, Reliability, Maintainability, and Quality	7-104
7-21	Assurance breakdown by department	7-10

FIGURES

Figure		Page
6-1 6-2 6-3	Average overtime for August 1985 to January 1986 Shift distribution Workforce characterization	6-7 6-9 6-13
7-1 7-2 7-3 7-4 7-5 7-6	SPC Organization chart Business Management organizational chart Shuttle Data Systems organizational chart Shuttle/Payload Integration organizational chart Operations Control organizational chart Shuttle and Ground Support Engineering organizational	7-2 7-8 7-27 7-32 7-38
7-7 7-8 7-9 7-10 7-11	Chart KSC Operations organizational chart Morton Thiokol organizational chart Support Operations organizational chart Logistics organizational chart Safety, Reliability, Maintainability, and Quality Assurance organizational chart	7-49 7-62 7-72 7-79 7-96

SECTION 1 EXECUTIVE SUMMARY

As a consequence of the significant increase in the planned levels of manpower on the Shuttle Processing Contract (SPC) at the Kennedy Space Center (KSC) projected in Program Operating Plan (POP) 87-1, the Director of the National Space Transportation System (NSTS) directed that a detailed review of the SPC manpower be undertaken. A review team was formed, headed by Jim Adamson and composed of representatives from NASA Headquarters (Norm Starkey/MOK, Richard Schneider/BR, Mal Peterson/B) and Level II (Jim Adamson, Tom Foster). Detailed briefings were given to the review group by KSC personnel, with participation by the Lockheed Space Operations Company (LSOC), during the June 8-16 period. Further meetings with KSC personnel were held in mid-July. This report provides the background, analyses, and findings of the team.

In the six month period (August 1985 through January 1986) prior to the loss of the Challenger and its crew on Space Transportation System (STS) 51-L, the average headcount of LSOC and its team members (Grumman Aerospace Corporation, Morton Thiokol, and Pan American World Airways) was 6,117. At that time, the average launch rate was about one per month. Considerable overtime was required of the contractor workforce to achieve the launch rate, resolve hardware and launch system anomalies, and accomplish the directed modifications to the STS hardware. For example, after segregating the indirect personnel (413), those on leave without pay (LWOP) (56), and other fund sources (DOD, Centaur modifications and other Shuttle production and operational capability activities), the remaining direct headcount required for Shuttle operations in that period was 5,264. Factoring in overtime, the direct equivalent manpower was 6,022. Overtime percentages worked in vehicle processing and areas that directly support vehicle processing averaged over 20 percent.

After STS 51-L, a number of intensive reviews were conducted of the manner in which the Shuttle processing operations were conducted at KSC. The Presidential Commission on the Space Shuttle Challenger Accident criticized the level of overtime required by the SPC workforce in the period leading up to STS 51-L. The NASA prelaunch activities team report (included as an appendix in the Roger's Commission report) indicated that, "Problems found with paper, workmanship, lack of thorough understanding of requirements and configuration may well have their roots in the overloading of the available workforce. External factors such as late requirements also affect the efficient utilization of the available workforce, as well as inducing schedule perturbations that tend to exacerbate the problem of improper documentation discipline."

The corollary KSC report of the "Paperwork and Preparedness Review Teams," published February 20, 1987, resulted in three major findings: (1) paperwork systems should be enhanced to provide improved understanding and control; (2) KSC personnel should be thoroughly trained in procedures for origination, handling, and closure of paperwork; and (3) paper handling documentation instructions required updating and clarification.

The third significant analysis was performed on the SPC by a team led by Mr. Roy Estess. This review recommended that the SPC be retained, but also recommended (1) a substantial increase in interaction with design agencies, (2) stronger involvement in processing by engineering and quality assurance, (3) increased and improved training to assure discipline and performance, (4) adoption of a hybrid stationizing approach, (5) improved paper systems, and (6) focused attention of test preparation sheet (TPS) paper and (QA) oversight.

The findings and recommendations of these review teams played a significant role in the recommendation for SPC manpower levels, as reflected in the current KSC assessment. In total, KSC presented the team with a comparison which projected an SPC headcount level of 7,512 in FY 1990 against the 6,117 in the period prior to STS 51-L. This represents a 23 percent increase. If the overtime differences are factored in, the real growth in equivalent manpower is only 10 percent. However, for just Shuttle operations, the difference between 6,907 Equivalent Persons (EP's) and the figure of 6,022 EP's before STS 51-L represents an increase of 15 percent. Note that the key assumption is that the increase in headcount enables the overtime to be reduced to the 1 percent level by FY 1990.

For the same two periods, the changes, by organization or an equivalent, in total and for Shuttle Operations are shown in Table 1-1.

TABLE 1-1.- Changes in manpower levels from pre-STS 51-L to FY 1990.

Organization	Total, percent	Operations, percent
Sustaining Engineering	+ 134	+ 277
Process Engineering	+ 45	+ 55
Payload Integration	+ 21	+ 22
Support Operations	+ 10	+ 22
SR&QA	+ 19	+ 20
Shuttle Data Systems	+ 7	+ 10
Operations Control	+ 19	+ 20
Logistics	- 13	- 15
Shuttle Operations	- 6	- 6
Grumman launch processing system (LPS) Operation and Maintenance (O&M)	+ 3	+ 3
Morton Thiokol	+ 8	+ 8
Business Management	- 1	- 16

(Note that in Sustaining Engineering, and to lesser extents, in Logistics and in Support Operations, the comparisons are misleading to the extent that the SPC has recently assumed responsibilities which KSC previously

contracted for with other contractors-principally Planning Research Corporation (PRC). The Sustaining Engineering comparison would show an increase of 36 percent vs. the 134 percent indicated above if the PRC vs. SPC adjustment were used to normalize the data.)

The key reasons for these changes stem from the premise that the pre-STS 51-L manpower for engineering/quality control (QC) planning and control supporting the "hands-on" processing operations, the closed loop Operations and Maintenance Requirements Specification (OMRSD) for ground support equipment (GSE), and the facility GSE Operation and Maintenance (O&M) have to be augmented to meet the STS program emphasis following STS 51-L on the elimination of risk and on increased design center involvement in operations.

Our review, however, indicates that the revised estimates are only best estimates with significant inherent assumptions which are open to change. A key concern has to do with overtime assumptions. KSC plans to augment the workforce manning levels to achieve a 1 percent overtime goal in FY 1989, down from 5 percent in FY 1988. However, a 1 percent overtime rate is not regarded as achievable by both LSOC and KSC personnel, who believe 5 percent is more realistic. What is not clear is what KSC considers the appropriate manpower level, the 7,512 headcount plus 1 percent overtime, a higher level based on taking into account a greater overtime rate (such as 5 percent), or the 7,386 headcount with 1 percent overtime brought forward in POP 87-2. The dollar impact between the first two manpower levels amounts to about \$16 million.

In addition, caveats are attached and assumptions are made which will affect these manning levels. Two caveats which could increase the estimate are: (1) no allowance is made for alterations in solid rocket motor (SRM) processing requirements which add work to the current timelines; and (2) implementation of the System Integrity and Assurance Program's (SIAP's) requirements for greater design center involvement and additional reporting requirements has not been factored in. With regard to the second caveat, KSC personnel noted that the need to obtain design centers' approvals could have a negative effect on processing timelines. Unless schedule is made the variable, overtime and additional staffing will be required to adhere to launch dates.

Four key assumptions which could be considered conservative are: (1) there will be a continuing high level of modifications to the Orbiters; (2) increased manning levels attributable to an explicit allowance for training do not translate into improved workforce expertise and resultant efficiencies; (3) in design engineering, there will be a constant level of modifications to KSC facilities and equipment even after return to flight (RTF) modifications are completed; and (4) the high level of emphasis placed on paperwork improvements (clarification of procedures) during the downtime does not improve workforce efficiency.

The review team has concluded that the central issue is the level of changes to flight and ground systems which will be required in the future. The comparison to the period immediately preceding STS 51-L to FY 1990 usually

cites the roughly comparable flight rates of one per month. Our review has identified activity levels, not flight rate, as the key variable. After making allowances for the increase in specific areas such as the presence of engineers on the floor or a 3.5:1 ratio of Orbiter Processing Facility (OPF) technicians to inspectors, the need to make further manpower increases or the possibility of reductions centers around the number of changes, their magnitudes, and the timelines of the implementing paper and hardware. In the face of no guidance to the contrary, KSC has assumed that the level of changes will be close to the period preceding STS 51-L.

SECTION 2 PURPOSE

The purpose of this review is to provide NASA management with an assessment of the need for the substantial increase in manpower level required for Shuttle processing at the Kennedy Space Center after the Space Shuttle has returned to flight operations. The review focused on obtaining a detailed understanding of the relationship between work requirements and associated manpower levels, comparing the situation in the six months prior to STS 51-L (January 1986) to that now projected for FY 1990. Finally, this report was generated to preserve the information gathered during detailed fact finding. It is hoped that this document will serve as a future reference for Shuttle processing manpower requirements.

SECTION 3 SCOPE

The scope of this review has been limited to a comparison of the actual manpower requirements for the six month period immediately preceding STS 51-L to the projected requirements for the first quarter of FY 1990. The review was conducted at a detailed level consistent with the organizational structure of the SPC. Functions, tasks, cost drivers, new work content, and work volume indicators were identified. The findings and recommendations generated by external and internal reviews (The Rogers Commission, The Congressional staff, The Aerospace Safety Advisory Panel, The Estess Team, and KSC's internal review) were also analyzed.

As noted previously, the first quarter of FY 1990 was presented as a basis for comparison by KSC. The team did examine data for the period of time from the present to October 1989 to identify the impacts of changing shifting and overtime assumptions.

The manpower data presented by KSC reflects current program requirements and stated assumptions. It does not reflect unapproved programs or potential threats which may subsequently impact SPC requirements. The KSC position reflects its own detailed review of the contract proposal submitted by LSOC for the current option period.

We noted that there is incomplete understanding on KSC's part of the potential impact of the Systems Integrity and Assurance Program (SIAP). The relationship of the augmented design center involvement (including the Launch Site Support contracts) to SPC manpower was examined, but KSC personnel were unclear as to its impact, except to point out that the degree of the design centers' involvement in the approval of test procedures, data analysis, etc. could pose a threat to the timely accomplishment of processing schedules.

SECTION 4 METHODOLOGY

4.1 TEAM COMPOSITION

The SPC manpower review team was composed of

- Jim Adamson, Astronaut, assigned to Level II Engineering Integration Office
- Mal Peterson, Assistant Comptroller for Program Status Review and Cost Assessment, NASA Headquarters
- Norm Starkey, Acting Chief for KSC Operations, Operations Utilization Division, Office of Space Flight
- Richard Schneider, Program Analyst, Resources Analysis Division, Office of the NASA Comptroller
- · Tom Foster, Program Analyst, Level II Program Control Office

The team was assisted by a number of KSC personnel, including Jack Harden, John McBrearty and Doug Moody. In particular, we appreciate the secretarial support provided by Shirley Beck.

4.2 ACTIVITIES

KSC personnel made presentations on each SPC organization on June 9-10. From June 11-16, the team members conducted interviews with KSC and LSOC personnel. From July 6-10, several team members attended the POP 87-2 review to obtain additional information. The team convened again from July 14-16 to write its final report.

4.3 APPROACH

The team was briefed by KSC personnel on the comparative SPC headcounts for the two periods previously mentioned. Since a key factor in the projected headcount increase for FY 1990 was a reduction in the level of overtime experienced in the base period, the team collected data on the actual overtime. In addition, LSOC's organization had undergone relatively minor changes. At the team's request, LSOC provided the appropriate adjustments to the pre-STS 51-L data to allow the explanations of changes to be made without concurrent explanations of organizational changes.

KSC also identified areas where the SPC had been recently assigned responsibilities previously conducted by other KSC contractors. For example, LSOC will be performing certain logistics engineering tasks (for KSC equipment) which PRC previously performed. In addition, communications design tasks for the entire KSC operation have also been assigned to LSOC.

In Sustaining Engineering (design engineering), there are a number of tasks that were relating to troubleshooting and redesign of GSE/facilities, previously performed by PRC and civil service personnel. The original concept was that after PRC had completed the design and oversight of the implementation, SPC would only have to assume the maintenance of the equipment and facilities. KSC/Design Engineering (DE) now argues that the approximately 100 man-years of effort annually should be carried forward to the SPC. This is regarded by KSC as a "transfer," but the team believes it more appropriately reflects a change in the planned scope of work for the future.

The team also endeavored to determine and analyze the level of manpower required for "core" operations. The concept of a core addresses the key issue of the sensitivity of the manpower level to flight rate. After extended discussions, the team requested that KSC and LSOC rework their previous efforts in this direction to identify the manpower associated with a "minimum processing level." The groundrules provided by the team to KSC were stated as follows:

"All facilities open to support Shuttle operations which would be open during full-up processing except at appropriately reduced manning levels required to support one vehicle flow operations and 1 to 4 flights per year."

Data was also collected on a per-shift basis to identify the proportions of the work force working first, second, and third shifts.

Discussions with KSC personnel were held on experienced turn-around times, projected flight rate capability, and labor rates. The team discovered that the historical data base did not facilitate the analysis of the labor required for processing anomalies, orbiter mod traffic, change requirements, and "unplanned" work.

The team identified a number of areas in which changes in operating approach and assumptions have been made: Increased interaction with design centers and their element contractors; a return to having engineering presence on the OPF floor instead of having "supertechs" capable of interpreting work authorization documents; increased staffing levels to minimize overtime; more attention to the criticality of GSE, including going to a closed-loop OMRSD approach; emphasis on training the workforce, both on the job and in the classroom, including the use of simulation techniques for Launch Control Center (LCC) operators; the adoption of an "Apollo-type" QC inspector to OPF technician ratio (1:3.5); the adoption of a rigorous Orbiter structural inspection program; and greatly increased emphasis on the paper systems, from generation of work authorization documents to monitoring systems and formal pre-move reviews where open work papers have to be closed out.

SECTION 5 SHUTTLE PROCESSING CONTRACT

5.1 BACKGROUND

The Shuttle Processing Contract (SPC) was signed September 23, 1983 with a team headed by Lockheed Space Operations Company. The LSOC team is composed of LSOC, Grumman Aerospace, Morton Thiokol, and Pan American World Airways. The manpower figures referenced in this report cover the activities of the four team members.

In addition, there are currently seven minor subcontracts (booked as other direct costs) with Rocketdyne, Bionetics, EG&G, BAMSI, Unified Services, USBI, and Wiltech. Their total manpower amounts to approximately 300 persons.

After the contract award, the SPC gradually assumed the responsibilities of the incumbent contractors. The transition was completed by April 1984. The basic contract period was for three years, through September 1986. A firm option for an additional three years was also negotiated.

Although it was recognized at the time that the Space Shuttle was still in a developmental phase, NASA assumed that the Shuttle would evolve quickly into a relatively mature operational system. Airline-type operations were cited as an eventual goal, where processing operations and the supporting facilities and equipment would be standarized. This assumption carried with it the belief that the Space Shuttle program had to avoid constant reengineering to achieve rapid turnaround times and cost efficiencies. The degree of engineering involvement was to be minimized over time, and the typical aerospace reliance on pervasive quality control inspectors would also evolve to higher ratios of hands-on workers (technicians) to inspectors. Paperwork systems which were predominantly done by hand would be automated.

5.2 CONTRACT SCOPE

The areas of responsibility for the LSOC team are: Lockheed, prime; Grumman, Launch Processing System Operation and Maintenance (0&M); Morton-Thiokol, Solid Rocket Booster (SRB) and External Tank (ET) processing; and, Pan Am airline, methods and techniques. Lockheed is responsible for all Shuttle processing activities at KSC (and Vandenberg Air Force Base, under a separate schedule), including receipt, processing, directed modifications to and integration of all system elements (Orbiter, ET, solid rocket motors (SRM's), and SRB hardware) in preparation for launch; Orbiter to cargo integration and validation; launch, landing, and recovery operations (except for the SRB retrieval); and operation and maintenance and design modifications for assigned facilities, support equipment, and systems (such as communications).

KSC's intent over time has been to make the SPC "self-sufficient" by moving work previously performed by other contractors at KSC and Orbiter logistics responsibility to positions under the SPC. The scope of work assigned to the SPC has increased accordingly, with concomitant manpower increases. As an example, communications design and implementation activities have been recently assigned to the SPC, requiring an increase of 56 persons. This work was previously carried out by four contractors working for KSC's Design Engineering organization.

5.3 CONTRACT FORM

At inception, the SPC contract for the transition period October 1983 to March 1984 was a cost plus award fee (CPAF). From April 1984 to early 1986, the contract had a cost plus incentive fee/award fee arrangement. The incentive fee was based on the number of successfully completed missions, factored by the contractor's share of variances from the target cost. The latter was designed to create the incentive for a rapid transition to efficient operations. At the time of STS 51-L, LSOC was overrunning the target cost by about 10 percent. After STS 51-L, the change in the nature of the operations necessitated a change in the contract form to a fixed fee/award fee arrangement for the remaining period, through September 1986. The three-year follow-on contract has also been changed, to a CPAF with a maximum award fee of 8.5 percent.

The scope of work and the cost for the follow-on contract is now being negotiated with LSOC, with the manpower and cost reflecting the changes in the operational approach and philosophy as well as the launch rate. LSOC submitted a proposal for the scope of work, as understood in October 1986. Since that time, LSOC has revised its proposal several times to reflect further changes in the STS-26 launch date, additional scheduled work, and revised assumptions about the manning levels required to meet new program requirements. The current LSOC proposed manpower levels and the previous estimates are discussed below in Section 6.5.

5.4 REVIEWS OF SPC PERFORMANCE

As previously indicated, a number of groups have reviewed the KSC operations conducted under the SPC. These reviews led to findings of significant deficiencies in many areas. Correction of these deficiencies has, as already noted, led directly to increases in future manpower projections. The deficiencies listed below have been selected from the review groups' reports as having the largest impacts on SPC manpower requirements.

- 1. Excessive reliance on overtime over an extended period of time, leading to diminished workforce performance as worker fatigue became a factor.
- 2. Insufficient numbers of engineering personnel in an overall sense, and particularly a lack of subsystem processing engineerings being present in the immediate workplace (largely in the OPF).

- 3. Inadequate engineering involvement in vehicle processing planning and schedule integration.
- 4. Insufficient staffing of liaison engineering personnel for 7-day/3-shift (7/3) coverage at Vehicle Assembly Building (VAB) and the Space Shuttle Launch pads.
- 5. The lack of timely quality engineering availability at the launch control complex and pads.
- 6. Insufficient numbers of quality inspectors (QI's) and the lack of QI specialization.
- 7. The failure to anticipate potential future problems and areas requiring corrective actions due to not having done reliability engineering failure modes and effects analyses (FMEA's).
- 8. The need for simulation training of firing room personnel at subsystem and full-up integrated levels.
- 9. Cumbersome, poor-quality, inadequately disciplined paper systems; the need for revisions to Operations and Maintenance Requirements Specification (OMRS), Operations and Maintenance Instruction (OMI), and control documents.
- 10. The lack of timely problem-trend data; the lack of systems for overall quality measurement.
- 11. The lack of a closed-loop system for tracking and verifying requirements, including waivers and exceptions.
- 12. The failure to maintain currency on GSE OMRSD's and with less discipline, compared to flight vehicle OMRSD's.
- 13. The need for improved discipline and training of the technician workforce.
- 14. The failure to close open work and disposition open paper prior to key milestones (e.g., OPF rollout).
- 15. Insufficient involvement by design center contractors in all phases of operations.

5.5 LSOC MANPOWER ESTIMATES

As noted above, KSC and LSOC are currently negotiating the change (Change Order 143) to the previously definitized contract option for the October 1986 to September 1989 period of performance. KSC informed the team that the manpower levels proposed by LSOC in its October 1986 proposal were regarded by KSC as significantly understated. KSC's contract manager representatives (CMR's) believed that the proposed levels represented a top

management judgement which did not adequately reflect the concerns of LSOC's departmental managers.

As a result, the team met privately with LSOC management (Mr. Oppliger and Mr. Peasinger) on June 12, 1987. They indicated that the absence of a detailed understanding of the changes in operational approach and requirements had led them to reject the submissions from their department heads in favor of a parametrically-derived estimate. The difference in FY 1989 average staffing levels was approximately 1,000 in headcount - 7,000 for the parametric estimate vs. 8,000 from the department heads. (These figures include all fund sources and directs, not just Shuttle operations.) LSOC has since submitted revised proposal of 7,267 and plans to incorporate further changes to bring the total to about 7,500. These changes reflect a series of discrete requirements changes as well as an improved understanding of the engineering, data systems, and Safety, Reliability, and Quality Assurance (SR&QA) tasks. Although differences at the departmental level still exist with the KSC Contract Manager Representative (CMR) evaluations. the total levels are consistent with KSC's estimate of a 7,512 manning level for FY 1990.

It is worth noting that both LSOC and KSC management agree completely that the manning levels should be predicated on an assumption that the flight hardware, facilities, and equipment will experience continuing high modification rates. The LSOC representatives also indicated that the assumption of a 1 percent overtime rate across the total workforce in FY 1990 is probably unrealistic. They expect the overtime rates to increase, reflecting the desire for improvements in vehicle processing flowtimes.

SECTION 6 CHARACTERIZATION OF THE WORKFORCE

6.1 OVERVIEW

A description of the workforce and how it is tailored to support Shuttle processing operations is required to understand the SPC manpower drivers and the workforce sensitivity to flight rate. This description includes kinds and distribution of skills, shifting methods and overtime rates, and changes in the character of the post-STS 51-L operations. This description is preceded by some of the underlying assumptions about the nature of the processing operations and what distinguishes them from other production operations, such as an assembly line.

6.2 ASSUMPTIONS USED TO TAILOR THE WORKFORCE

As the responsible center for launch and landing operations, KSC has facilities which, depending upon fleet size, are capable of achieving a given flight rate. The SPC workforce is tailored to man these facilities as necessary to produce those flights. The maximum flight rate is dependent upon the turnaround time (TAT), the facilities, and the fleet size. The TAT, exclusive of mission and landing-site-to-launch-site transportation time, is a function of the serial processing time required as the vehicle and payload are processed through the OPF, the VAB, and the pad. since mission and transportation are relatively small time increments, processing time represents the critical path for achieving the maximum flight rate.

Theoretically, maximum operational efficiency in a multi-vehicle operation is realized by creating a mix of vehicles, facilities, and personnel levels such that all processing operations are on the critical path simultaneously. Idle time would be nil. That type of efficiency can be realized only if processing times can be predetermined with sufficient advance notice. As a result of modification (mod) traffic and special test requirements, that has not been the case with the NSTS program, and there is no reason to believe that this historical problem will not continue for at least the next few years. It is certainly the largest single driver for flight rate.

Experience indicates that the time required to process the Orbiters through the OPF governs the flight rate, as shown in Table 6-1. Not counting first flows and major mods of orbiter vehicles, the OPF times for previous flights average 44 workdays, with a standard deviation of 18 days. The VAB has typically run 7 days, with a standard deviation of 3 days, and the pad, 25 days, with a standard deviation of 13 days. The OPF processing time, however, is determined by the amount of recurring and nonrecurring operations (mods, special test requirements) required. Fully manning this facility is essential to assure that the recurring and nonrecurring operations consume the least possible time. The manpower levels are, therefore, more a function of optimizing the utilization of this facility, with flight rate being a product of the processing requirements.

TABLE 6-1.- SPACE SHUTTLE ORBITER PROCESSING RATE

Flight	date	OPF days	VAB days	PAD days
1	4-12-81	F531	F33	F104
1 2 3	11-12-81	99	18	70
3	3-22-82	55	12	30
4	6-27-82	41	7	29
5 6	11-11-82 4-4-83	48	9 F6	45 F115
6 7	6-18-83	F123	5 ·	21
8	8-30-83	34 26	4	25
9	11-28-83	82	12	34
41-B	2-3-84	52	. 6	22
41-C	4-6-84	31	4	18
41-D	8-30-84	F123	F15	F72
41-G	10-5-84	53	5	22
51-A	11-8-84	34	5 5 5 4 7	17
51-C	1-24-85	31	5	20
	rub	57	5	20
51-D	4-12-85	53	5	15
51-B	4-29-85	31	4	15
51-G	6-17-85	37	/ E	14
51-F	7-29-85	39	5 7	31 22
51-I	8-27-85 10-3-85	27	F14	F34
51-J	10-30-85	F84 35	4	14
61-A 61-B	11-26-85	35 27	4	15
61-C	1-12-86	M103	M6	M34
51-L	1-28-86	31	5	28
Average d	avs	44	7	25
Standard	deviation	18	7 3	13

F - FIRST FLIGHT OF VEHICLE

NOTE: The average days and standard deviation figures are exclusive of first flights and major mod flows.

M - FIRST FLIGHT FOLLOWING MAJOR MOD

Accordingly, the processing workforce must be capable of supporting an around-the-clock operation at all times in the OPF.

More flexibility is assumed in the VAB and pad operations, where surge requirements predominate, and in areas like payload integration. In these areas, manpower levels sufficient to support 5-day/2-shift (5/2) operations are usually required, with surge requirements handled by cross-utilization and swing shifting. On one of the pads, for example, operations requiring 7/3 schedules can be accommodated by using personnel from the other pad, temporarily suspending mods and pad maintenance.

6.3 DISTRIBUTION OF THE WORKFORCE ACROSS FACILITIES

Although the OPF, the VAB, and the pads are focal points, the manpower in these facilities comprises only a fraction of the total workforce required to process the Space Shuttle. Table 6-2 shows the distribution of SPC manpower at KSC.

6.4 SENSITIVITY OF WORKFORCE REQUIREMENTS TO FLIGHT RATE

Although flight rate is the product of the SPC, in fact the manpower requirements are driven only secondarily by the number of flights. The real driver is the mix of facilities required to support processing operations. Flight rate depends, therefore, upon the set of serial flow requirements that must be satisfied in each of the facilities on the critical path.

One purpose of this study, however, was to understand the sensitivity of the workforce to the flight rate. In other words, if the flight rate were to be reduced from 12 flights per year to 10 (or increased a like amount), what affect would there be on the manpower requirements? Accordingly, a fixed vs. variable workforce analysis was conducted. This analysis required assumptions on a given set of facilities to define what constituted some (arbitrarily defined) minimum processing posture for KSC. Manpower estimates were provided by KSC and SPC for this minimum, based on having an "open for business" facility set, which in turn defined a minimum flight rate. The definitions are as follows:

a. Minimum Processing Level (Open for Business) - All facilities open to support Space Shuttle operations which would be open during full-up processing except at appropriately reduced manning levels required to support flow operations for one vehicle and 1 to 4 flights per year.

Assume the following:

- (1) One OPF bay for processing and a second bay in a facilities maintenance/mod status
- (2) One VAB bay for processing a Space Shuttle vehicle (SSV) and a second bay in a facilities maintenance/mod status

TABLE 6-2.- SPC PERSONNEL DISTRIBUTION BY SITE AS OF JUNE 1987

No.	Organization:	OPF	VAB	Pads & prop	LCC	VAB complexes	Indust area	Other
	Total LSOC/SPC	605	1083	404	676	807	776	1117
11-XX	Shuttle Data Systems		13		10	247		13
13-XX	Human Resources		_	•			62	
15-XX	Shuttle/Payload Integration	20	/	2		82		1.0
16-XX	Operations Control (LCC)	30	1	3		22	53	18
17-XX	Shuttle & Grnd Supt Engrng	141	382	15	1.4	225	19	163
18-XX	Business Management	200	5		14	28	112	1
20-XX	KSC Operations	382	406	66	114	107	00	88
24-XX	Morton Thiokol Operations		48	0.40	00	20	20	34
30-XX	Support Operations	1	126	242	83	89	378	299
31-X X	Grumman/LPS		12	/	258		91	25
40-X∦	Logistics	39	22	4			29	268
50-X∦	SRM&QA	12	60	24		_	11	113
	Other		1	41	197	7	1	95

- (3) One pad in processing and a second pad in a facilities maintenance/mod status
- (4) Five-days-per-week/2 power-on shift operations in the OPF, the VAB and the pad, except as necessary during launch, hazardous, and other critical operations.
- (5) Other assumptions you may require to characterize your workforce in support of this minimum-level operation.
- (6) Two other Orbiters at KSC (not in flow and not in mod) but meeting OMRSD requirements; positioned in the VAB or OMRF.
- b. Core Work Force The portion of the SPC workforce (Shuttle operations, direct EP) required to support the launch and landing facilities when operating at the "minimum processing level."
- c. Maximum Processing Complement The additional complement of manpower required to increase the capability of the launch and landing facilities from minimum processing level to maximum capacity.
- d. Maximum Capacity For any given set of processing requirements, maximum capacity indicates the processing rate that utilizes the existing buildings, facilities, and fixtures to the maximum extent possible to prepare, launch, and recover Space Shuttle missions.

Assume the following:

- (1) Two OPF bays processing vehicles with facilities maintenance/mods being conducted in parallel. Seven-day/3-shift operations (2 shifts, power on; 1 shift, power off).
- (2) The OMRF facility is available with safing/deservicing capability.
- (3) Two vehicles in flow, plus one vehicle in flight or recovery/deservice status, and a fourth vehicle in a preparation (prep), mod, or wait state.
- (4) Two vehicles in the VAB with facilities maintenance/mod conducted in parallel. A 5-days-per-week/2-shift operation with both pads in operation.
- (5) One vehicle on a pad at a time, and the second pad in a facilities maintenance/mod status.
- (6) Other assumptions as you may require to characterize maximum processing capability.

The responses from the SPC organizations indicated that the level of core manpower amounted to 5,650 in FY 1990. As indicated from the definitions above, this represents the "open for business" level of manpower. To get to the rate of one launch per month, an additional 1,862 personnel were judged to be required. An organization breakdown of this level of manpower is exhibited in Table 6-3.

No.

XX-XX

11-XX

15-XX

16-XX

17-XX

20-XX

24-XX

30-XX

31-XX

40-XX

50-XX

Operations Control

Support Operations

Operations

Grumman/LPS

Logistics

SMR&QA

Morton Thickol

Shuttle & Ground Support Engineering

JSC 22662

Shifting Additional Organization Core processing SPC total contract Business Management Shuttle Data Systems Shuttle/Payload Integration

TABLE 6-3.- SPC MANPOWER BOTTOMS-UP REVIEW SHIFTING ASSUMPTIONS FOR FY 1990

6.5 THE RELATIONSHIP OF SHIFTING ASSUMPTIONS TO MANPOWER

a. Background - In the six months prior to STS 51-L, the SPC workforce in key areas worked around-the-clock, seven days a week. Using December 1985 data as a benchmark, the number of employees actually assigned to the second and third shifts represented 13 percent and 5.5 percent of the total workforce. In the OPF, the second and third shifts amounted to 25 percent and 12 percent of the 634 total employees. This characterization is misleading, however, due to the large amount of overtime being worked. In the OPF, overtime in November and December 1985 averaged 28 percent and 22 percent, respectively. Overtime for supporting engineering, quality, support technicians, LCC firing room, and program planning and control personnel were also necessarily high. Figure 6-1 illustrates the workforce overtime data for the six month period prior to STS 51-L.

The efficiency of the workforce was impacted not only by the negative effects of working prolonged stints on overtime, but also by the high levels of unplanned work, including modifications and processing anomalies or incidents. The post-STS 51-L review committees concluded that the workforce manning levels were simply inadequate to conduct safe, effective operations on the second and third shifts.

Figure 6-1.- Average overtime for August 1985 to January 1986.

TABLE 6-4.- SPC manning levels.

		•		
	LSOC	Grumman	Thiokol	Total
December 1985	5061	769	440	6270
lst shift	4319	509	293	5121
2nd shift	551	144	108	803
3rd shift	191	116	39	440
FY 1990	6285	745	482	7512
1st shift	4609	442	282	5333
2nd shift	1099	162	137	1398
3rd shift	577	141	63	781

b. Current Shifting Plans - The increased manning levels for the SPC as a whole show significant differences when compared to the December 1985 data on a per-shift basis, as shown in Table 6-4.

The percentage increases For LSOC for the three shifts compute to 7 percent, 99 percent, and 302 percent, respectively. This is a headcount comparison, and it reflects the increase in manning levels to reduce overtime. (A comparison of equivalent manpower working each shift before STS 51-L is not available. We were informed that the overtime data as applied against each shift is not available for the pre-STS 51-L period.)

The change in approach is planned to be accomplished with odd work weeks (Monday through Saturday and Tuesday through Sunday) to enable weekend coverage and swing shifting, as well as augmented second and third shift manning for the standard work week. The key concern is to provide sufficient coverage on a 7-day/3-shift (7/3) basis in the critical path facilities while managing overtime at low levels. As indicated above, the OPF workforce and the supporting personnel are always in the critical path. The VAB and the pads become critical paths for distinct, relatively short periods during each flow. Figure 6-2 shows the planned shift distribution for FY 1990 by organization.

Figure 6-2.- Shift distribution in FY 1990.

OPF Shifting - In FY 1990, the OPF will be working 7/3's, with two c. shifts powered up, for continuing processing operations. Non-critical path operations (such as mods, structural inspections, and GSE work) are expected to be workable on a 5/3 or 6/3 basis. An early approach to providing 7/3 coverage was to have seven subcrews on an odd work week schedule, i.e., approximately 500 of the projected level of 690 people (the total manning for the OPF and supporting landing site operations) would be working on any given day. This "rolling wave" approach has since been modified. LSOC is now leaning toward having about 3 subcrews working odd work weeks. Since a 7-member subcrew. enabling a full-up 7/3 approach, involves increasing the manning levels in all the supporting elements as well, i.e., LCC operators, process engineering, support technicians, quality, and program planning and control, this is an affordability issue on one side and a question of effectiveness on the other. The effectiveness issue involved the consideration of incurring a large amount of non-productive time whenever process operations are such that only a small number of the workforce can be utilized for given operations, such as hazardous operations, rollout preparations, etc. An example of why this appears reasonable is that the rules governing hypergol operations in the OPF have been changed so that both bays of the OPF now have to be cleared when hypergol operations are being conducted in one bay. Consequently

LSOC intends to utilize the weekends to the maximum extent possible for such operations. However, the modified approach allows for weekends to be used to work critical path operations, with the potential for altering workforce shifting plans and using overtime when deemed desirable.

The other aspect of the original "rolling wave" approach was to have three relatively equal (in terms of technician manning) shifts per day. The rationale of using the third shift as a power-on operation vs. the current plan of having only the first two shifts power-on is as follows: In the past the third shift has been scheduled for light activity and limited power-on activity, even though delays in the first two shifts' processing operations resulted in higher activity levels. LSOC would prefer to have the third shift make preparations for the first shift in an attempt to avoid the past experience of having delayed starts in processing operations on the first shift.

- d. VAB/Pad Shifting The operations in the VAB are scheduled for 6/3's, but the manning levels provide the capability of executing 7/3's when continuous operations are required, such as SRB stacking and stacked vehicle processing. The workforce on both pads is scheduled for non-critical path operations on a 5/2 basis. some third shift work is conducted as needed. When the vehicle is in final launch preparations, the pad being used will work 7/3's, cross-utilizing manpower from the other pad.
- Supporting Elements As is commonly the case in aerospace operations. e. the bulk of the manpower supports the hands-on technicians. For example, the Launch Control Complex firing rooms have to be active when power-up testing is conducted. Firing room and software support is consequently tuned to match processing operations. LCC systems validation manpower is not, and thus is planned to only work 5/2's. A key pre-STS 51-L issue was the availability of process engineering support to resolve problems which arose during non-first-shift testing. As noted above, LSOC estimates provide for substantially increased manpower to support the operational concept being employed in the OPF for processing. The same holds true, but to an even greater extent. for the personnel doing O&M of processing facilities, working in support systems or in shops and labs. The absence of personnel such as electricians on the third shifts and on weekends was cited by LSOC as an example of problems introduced into processing operations when the OPF. GSE, or other systems went down and processing was delayed while support personnel called from home came in to resolve the problems. LSOC now plans for personnel in critical areas to be working 7/3's, compared to the 5/2 shifting approach and the extensive overtime employed prior to 51-L. Although the bulk of the manpower will continue to be utilized on the first shift, figure 2 indicates that over 1,000 individuals in supporting elements will work the second shift, and almost 600 will work the third. This is a support-to-handson ratio of about three to one.

5 EFFECTS OF UNPLANMED WORK

A large percentage of the work that must be done during each sequence of Space Shuttle flight-preparation procedures (flow) is historically unplanned. "Unplanned" means it is not possible to plan and schedule the tasks in question before the flow begins. The magnitude of unplanned work is such that it is a significant driver in the sizing and constitution of the SPC workforce - technicians, engineering, and support.

Given the resources, the effects of unplanned work are primarily schedule changes, even though major milestones are usually met. The schedule changes at the detail level require flexibility of resources in terms of technicians and their various skills, engineers for the preparation of work paper, planners and schedulers, quality, logistics, and other support. An examination of an "as run" schedule compared to a pre-flow schedule in no way reflects the tremendous effort involved in the evolution from one to the other. It can be argued that at a detail level unplanned work takes a heavy toll on resources and may lead to error. The portion of unplanned work which can be controlled should be more carefully considered by the program.

The SPC workforce planning was based on KSC experience, which includes unplanned work as a major driver. A conservative definition of unplanned work is: modifications defined after LSFR, special requests approved after LSFR, changes to OMRSD's, and all problem reports, interim problem reports, and discrepancy reports. Several studies have been carried out on unplanned work, examining different elements of the above definition. The material below addresses three studies on unplanned work and a case study. Emphasis is on OPF operations because the quantity of unplanned work is greatest there.

- a. Time card data was examined in one study done on STS 24-31. Total vehicle-technician manhours in the OPF were computed for a flow, excepting all GSE and TPS work. The manhours for a "standard" flow were computed, and the difference was considered to be unplanned work. This study showed that an average of 39 percent of technician hours was spent on non-standard tasks, ranging from a low of 23 percent to a high of 53 percent. The engineering manpower percentage data was not available, but would probably be even higher for nonstandard tasks.
- the number of tasks conducted during the flows of STS 28-33 was examined as another indicator. In this study, all Operations and Maintenance Instructions (OMI's) and job cards were considered standard tasks, and all TPS's, PR's, and DR's were considered nonstandard. Using this definition, 49 percent of Orbiter stand-alone jobs were nonstandard, ranging from a high of 72 percent to a low of 34 percent. Of the entire flow, 37 percent was nonstandard (high 56 percent, low 24 percent).
- c. Using data from STS 31-33, there are an average of 24 late special requests, 18 Requirements Change Notices (RCN's), and 677 PR's per flow.

One case study was examined which seemed most representative of the effects of unplanned work. The sequence of events was recorded in NASA operations log. The full impact of a mod was not initially understood. Once the mod was started, a second-opportunity mod was identified. Several PR's surfaced, eventually becoming the critical path. Finally, an incident occurred which might not have happened had there been less schedule pressure. Paper had to be rewritten, and several decisions required other center coordination. Finally, this path plus other systems working independently of this path all were being driven by the payload bay doors closure date.

In summary, it can be said that there is no single, easy set of statistics that can accurately capture the impact of unplanned work on Shuttle processing. From KSC's experience base, the percentages have been high. The workforce planning for the future has been based on anticipating the same sort of unplanned work in the future as has been experienced in the past.

6.7 CHANGES IN THE OPERATION SINCE STS 51-L

As stated earlier, the findings of the external investigative committees together with KSC's internal self-evaluation have resulted in significant changes to the Shuttle processing operation. The effects of their findings and recommendations on SPC manpower amounts to added discipline in the flight vehicle processing and caring for associated ground systems. This added discipline has been manifested as additions to manpower in the areas of engineering support to the on-line workforce, additional quality control. and increased emphasis on planning and control of work. Figure 6-3 illustrates this effect on the major categories of the SPC contract. Offline support manpower has increased somewhat, indicating both transfers of tasks to LSOC and new requirements, such as the enhanced, closed-loop OMRSD accounting to be used for GSE maintenance. In process engineering support, the significant increase in manning levels is a result of several factors, the most obvious of which is increased engineering support to the hands-on workforce. However, some other, more subtle requirements are as follows:

- More engineers to handle problem resolution and to change traffic during the flows.
- Increased engineering attention to critical ground systems.
- · Increased interface requirements with design centers.
- · Increased Orbiter structural inspections and test requirements.

Figure 6-3.- Workforce characterization.

In the SRM&QA area, the increase reflects the enhancements to the processing QC inspector-to-technician ratios. These ratios will be higher than pre-STS 51-L levels and roughly equivalent to pre-SPC ratios. For example, in the OPF, the pre-STS 51-L ratio was 1:4 and is now planned to be 1:3.5. In addition, safety and reliability documentation, surveillance, and reporting are being enhanced across the operation to improve the SRM&QA organization's participation in the program change control, OMRSD, Operations and Maintenance Instruction (OMI), problem reporting, and performance measurement processes.

Finally, it is worthwhile to point out that although there is an increase in the absolute manning levels for hands-on personnel between the two periods, the same comparison on an equivalent-person basis, where overtime has been factored in, shows a decrease. The explanation given for this decrease by LSOC is that the augmented levels of personnel directly supporting hands-on operations will yield a more efficient and effective operation.

The overall conclusion of the team is that the revised manning levels and changes in operational approach are the result of increased conservatism and an effort to add discipline to the system. The underlying philosophical change is that the pre-STS 51-L resistance to abandoning the concept of progressing from a Research and Development (R&D) operation to an "airlinestype" operation has been overcome by the realization that the key elements of the STS system do not lend themselves to a routine operational approach.

SECTION 7 <u>DETAILED DESCRIPTION OF THE WORKFORCE</u>

7.1 OVERVIEW OF TOTAL CONTRACT AND DIVISIONAL BREAKDOWN

In this section, you will find Figure 7-1, an SPC organizational chart, followed by table 7-1, an SPC manpower bottoms-up analysis of each organization.

NOTE: The detailed manpower numbers may differ from the summary manpower levels due to rounding.

Figure 7-1.- SPC organizational chart.

TABLE 7-1.

(A) SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS SPC SUMMARY

	:		PRE-51L		FY19		DELT		
						:		-	
NO.	ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	RVE T EP	RVE HEROCOUNT	RVE EP	RVE HEROCOUNT	AVE EP	
	=======================================	552X====		=======	=======	=======================================	=======	=======	
	SPC_TOTAL_CONTRACT	1.12	6117		7512	7587	1395	712	
	E-101===================================					:		*=====	
xx-xx	BUSINESS HANAGEHENT	1.02	326	333	326	329 :	0	-4	
11-XX	SHUTTLE DATA SYSTEMS	1.12	410	460	485	490	75	30	
15-XX	SHUTTLE & PRYLOAD INTEGN	1.11	107	117	141	142	34	25	
16-XX	OPERATIONS CONTROL/PRA	1.13	345	389	459	464	114	75	
17-XX	SHUTTLE & GRND SPT ENGRG	1.13	647	725	1166	1178	519	453	
20-XX	KSC OPERATIONS	1.18	1050	1243	1156	1167	106	-75	
24-XX	MORTON THIOKOL OPERTIONS	1.13	400	450	480	485	, 90	35	,
30-XX	SUPPORT OPERATIONS	1.15	1060	1220	. 1335	1348	275	128	
31-XX	GRUHHAN/LPS	1.04	702	729	745	752	43	23	
40-XX	LOGISTICS	1.10	581	638	548	553	-33	-85	
50-XX	SRH&OR	1.17	489	571	671	678	120/04 18	§106	
							8	18	
		(B) SPC	MANP	OWER D	ATABASE		\$	į	
		BO.		-UP ANA	_YSIS			DIRECT	
			PR	E-51L			F	DIO	
							11	n	
NO.	ORGANIZATION:	: OVERTII	E RVE HEROCO		INDIREC	TS REIMB		LNCH OPS DIRECT	
					-		<u> </u>		
====		=====		/	5) =	3 440	=======================================		= 6462-440
5255	SPC TOTAL CONTRACT	1.	13 61 ** =====	I		= ======	<u>(1)6462</u>	5022 5025	
		:				·		· · · · · · · · · · · · · · · · · · ·	
x x-x	X BUSINESS MANAGEMENT	1.0	32 3	26 33	9 : 17 :	? 22	156	134	
11-X		1.1	12 4	10 46	D :	5 34	455	421	
15-X		1.1	10 1	07 11	7 :	4 0	113	113	
16-X		1.1	19 3	45 38	9; 1	1 0	378	379	
17-X	X SHUTTLE & GRND SPT ENGRG	1.1	12 6	47 72	5 ! 1 !	8 92	:	615	
20-X	X OPERATIONS	1.	18 10	50 124	3 : 2 :	£ 10	:	1207	
24-X		1.	13 4	00 45	0: 2 :	:o o	430		
30-X	X SUPPORT OPERATIONS	1.1		60 122	0; 2	21 174	1199	1025	
31-X	X GRUHHAN/LPS	1.0	04 7	02 72	:	0 103	:	606	
40-X	X LOGISTICS	1.		81 63	•		555	549	
50-x	X SHRNOR	1.1	17 4	89 57	1 ! 2	56 0	545	5 545	

TABLE 7-1.- CONTINUED

(C) SPC MANPOWER BOTTOMS-UP ANALYSIS FY1990

NO. ORGANIZATION:	PROJ'D HEROCOUNT	RVE EP	INDIRECTS	REIMB		DIRECT
TOTAL SPC CONTRACT	7512	7587	430	237 ======	7157	6920 =======
XX-XX BUSINESS MANAGEMENT	326	329	184	22	145	123
11-XX SHUTTLE DATA SYSTEMS	485	490	7	21	483	462
15-XX SHUTTTLE/PRYLOAD INTEGN	141	142	4	0	138	138
16-XX OPERATIONS CONTROL	459	464	12	0	452	452
17-XX SHUTTLE & GRND SPT ENGRG	1166	1179	17	16	1161	1145
20-XX OPERATIONS	1156	1167	29	O	1139	1139
24-XX HORTON THIOKOL	480	485	21	0	464	464
30-XX SUPPORT OPERATIONS	1335	1348	23	73	1325	1252
31-XX GRUNNIN/LPS	745	752	22	103	730	627
40-XX LOGISTICS	548	553	96	2	467	465
50-XX SHRUR	671	678	26	0	652	652

(D) SPC MANPOWER BOTTOMS-UP ANALYSIS SHIFTING ASSUMPTIONS FY1990

			SHIFTING			
NÖ. saassas	ORGANIZATION:	-1	2	3	CORE	ADO'L PROCESSG
	SPC TOTAL CONTRACT	5333	1398	781	5650	1862
xx-xx	BUSINESS MANAGEMENT	321	5	0	326	0
11-XX	SHUTTLE DATA SYSTEMS	461	12	12	457	28
15-XX	SHUTTTLE/PRYLOAD INTEGRATION	108	21	12	141	0
16-XX	OPERATIONS CONTROL	366	58	35	328	131
17-XX	SHUTTLE & GRND SPT ENGRG	929	155	82	971	295
20-XX	OPERATIONS	602	368	186	1001	155
24-XX	MORTON THICKOL	276	137	67	159	321
30-XX	SUPPORT OPERATIONS	960	248	127	998	337
31-XX	GRUNNAN/LPS	442	162	141	550	195
40-XX	LOGISTICS	456	60	32	355	193
50-XX	SHREGH	412	172	87	464	207

TABLE 7-1.- CONTINUED

(E) SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS

	;		PRE-51L	:	FY19		DELTA	
NO.	ORGANIZATION:	OVERTIME RATE	AVE HEADCOUNT	RVE EP	AVE HEADCOUNT	AVE EP	RVE HEADCOUNT	AVE EP
	TOTAL SPC	1.124		6875		7587		712
	BUSINESS MANAGEMENT	1.021	326	333	326	329		-4
10-XX 13-XX 18-XX	PROGRAM MANAGER & STAFF HUMAN RESOURCES BUSINESS MANAGEMENT		24 70 232	25 71 237	: 70	25 71 233	. 0	0 0 -4
11-XX	SHUTTLE DATA SYSTEMS	1.12	410	460	495	490	 75	30
11-01 11-4X 11-5X 11-6X	Hgt & Staff LPS ENG & S/N PROD HGT FACILITIIES 0 & N DATA SYS INTEGRATION		0 272 62 76	0 910 63 97	290 112	2 293 113 82	: 19 : 50	2 -17 50 -5
15-XX	SHUTTLE/PRYLORD INT	1.10	107	117	141	142	34	25
15-01 15-10 15-20 15-30 15-40	DIR, SHUTTLE/PL INT CENTPUR PROJECT SHUTTLE/PL INT OPS SHUTTLE/PL INT ENG SHUTTLE/PL REONTS & INT	1.10 1.10 1.10 1.10	21 48	9 2 23 53 31	26 65	4 3 26 66 43	1 1 5 1 17	-5 1 3 13
16-XX	OPERATIONS CONTROL	1,13	345	389	459	464	114	75
16-01 16-02 16-03 20-XX	OPERATION CONTROL STAFF LCC OPERATIONS PROCESS PLANNING & CTL PAR/OPERATIONS ANALYSIS		0 68 261 16	0 76 295 18	109	6 109 333 15	1 40	6 33 36 ~3
17-XX	TOTAL ENGINEERING	1.12	647	725	1166	1178	519	453
17-0X 17-1X 17-2X 17-5X 17-60 17-70 17-8X 17-9X	MANAGEMENT & STAFF PROJ ENGRG & TEST INT ELECT/HECHANICAL SYS ENG FLUID/HECHANICAL SYS ENG ENGINEERING TECHNOLOGY SITE LIRISON PROJECT HAMAGEMENT DESIGN ENGINEERING	1.00 1.11		24 61 271 221 5 10 49 84	90 371 331 6 27	29 91 375 334 6 27 116 199	1 38 134 137 1 18 69	5 30 104 113 1 17 67 115
2X-XX	KSC OPS DIRECTORATE	1.183	1050	1242	1156	1167	106	-75
20-01 23-XX 26-XX 27-XX	KSC OPS DIRECTOR OPF PAD OFFSITE LANDING/RECOVERY	1.018	12 606 406 26	12 709 491 30	582 462	9 598 467 105	-24 56	-4 -121 -24 75

TABLE 7-1.- CONCLUDED

(E) CONCLUDED

			PRE-51L		FY19		DELTA	
NO.	ORGANIZATIONS	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEADCOUNT	AVE EP	RVE HEROCOUNT	AVE EP
24-XX	MORTON THIOKOL OPS	1.13	400	450	490	485	90	35
24-01 24-10	DIR, VAB OPS - SRB MANAGEMENT & STAFF	1.12	7	8	2 10	2 10	2	2 2
24-30	Quality Assurance	1.18	63	74	: 98	89	25	15
24-40	Cacaba	1.13	13	15	: 20	20	7	6
24-50	ET/SPÉ PROCESSING	1.12	203	226	224	226	21	0
24-60	SRB RETRL/DISASSEMBLY	1.12	77	86		94		8
24-80	PROCESS SUPPORT	1.12	37	41	43 :	43	6	2
3X-XX	SUPPORT OPERATIONS	1.15	1060	1220	1335	1348	275	128
			11	11	11	11		0
30-01	DIRECTOR) }	672	801		862	•	61
33-XX	FACILITIES O & M		317	344		372		26
34-XX	COMMUNICATIONS COMMUNICATIONS DESIGN	1	25	26		57		31
35-XX 36-XX	TEST SUPPORT MGHT OFC		35	37		47		10
31-XX	GRUHHAN/LPS	1.04	702	729	745	752	43	23
	BUSINESS OPS		37	. 37	30	30	-7	-7
31-00	TEST SPT SPECIAL PROJECTS		45	47		43		-4
31-1X	LPS OWN		313	326		337		11
31-2X	INSTRUMENTATION CAL		99	103		133		30
31-3X 31-4X	ENGINEERING SPT		208	216		208		- 0
40-XX	LOGISTICS	1.10	581	638	548	553	-33	-85
	DIR, LOGISTICS	:	41	42	•	21	-20	-21
40-0X	SUPPLY SUPPORT	i	298	336		239		-97
40-3X	LOGISTICS ENGINEERING	:	85	88		132		44
40-4X	PROCUREMENT		65	72		52	-14	-20
40-5X	TRANSPORTATION		65	72		53	-13	-19
40-6X 40-7X	TECHNICAL TRAINING		27	26		57		29
4U-7A	(EDMICHT 1)	•			-		1	
50-XX	SRHSOR	1.17	489	571	671	678	182	106
	TOUR CO. PARCETOPATE	1.04	12	12	13	13		
50-01	SRHEGA DIRECTORATE	1.04	12 408	481		581	•	1 100
51-XX	RHADA	:	408 69	78		84	107	100
52-XX	SAFETY	•	67	70	1 43		14	•

7.2 XX-XX BUSINESS MANAGEMENT

In this section you will find figure 7-2, a Business Management organizational chart, followed by table 7-2, a manpower bottoms-up analysis of Business Management, and by Table 7-3, a Business Management breakdown by department.

Figure 7-2.- Business Management organizational chart.

Figure 7-2.- Concluded.

TABLE 7-2.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS BUSINESS MANAGEMENT

		PRE-51L	:	FY199		DELTA	
NO. ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEROCOUNT	AVE EP	RVE HERDCOUNT	AVE EP
XX-XX BUSINESS MANAGEMENT		326	333	326	329	-1 -1	· -4
10-XX PROGRAM MANAGER & STAFF	1.01	24	25	25	25	a	. 0
10-01 Program Manager 10-03 Public Affairs 10-04 Company Counsel 10-06 Admin & Mgt Planning		15 5 2 3	15 5 2 3	5 2	7 5 2 11	Ō	-8 0 0
13-XX HUMAN RESOURCES	1.017	70	71	70	71	0	0
13-01 Dir, Human Resources 13-10 Employment 13-20 Mgt Compensation 13-30 Security 13-40 Salaried Personnel 13-50 Human Resource Developmnt 13-60 Equal Employm't Oppor'ty 13-70 Labor Relations		8 9 14 19 8 7 3	8 9 14 19 8 7 3	9 6 3	11 8 13 19 8 6 3	-1 -1 0 0 -1	3 -1 -1 0 -1 0
18-XX BUSINESS MANAGEMENT	1.021	232	237	231	233	-1	-4
18-01 DIR, BUS. MGT/ Staff 18-06 NEH BUSINESS/ACQUISITION 18-1X RCCTG & FINAN CONTROLS 18-2X PROGRAM CONTROLS 18-3X BUSINESS SYS & OFC SYS 18-40 CONTRACT ROMINISTRATION		16 1 47 93 68 7	16 1 48 95 69 7	46 131 44	3 1 46 132 44 6	0 -1 38 -24	-13 0 -2 37 -25 -1
18-1X ROCTG & FINAN CONTROLS		47	48	46	46	-1	-2
18-10 Dir, Acctg & Finan Cotrls 18-11 Chief Accountant 18-12 Financial Controls 18-13 Financial Planning		4 30 12 1	4 31 12 1	4 28 10 4	4 29 10 4	0 -2 -2 3	0 -2 -2 3
18-2X PROGRAM CONTROLS		93	95	131	132	37	36
18-20 Dir, Dep Dir (2) & Staff 18-22 Prog Budget Ping & Cntrl 18-23 Program Mgt Systems 18-25 Proposal Mgt 18-21 Grnd Rorats Ping & Cntrl 18-24 Config Roctg & Verif 18-26 Fit Rorats Ping & Cntrl 18-27 Field Office		5 21 17 2 30 0 16 3	17	14 15 3 30 31 21	13 14 15 3 30 31 21	-7 -2 1 0	8 -7 -2 1 0 31 5
18-3X BUSINESS SYS & OFC SYS		68	69	44	44	-24	-25
18-30 LMIS Services 18-32 LMIS Busines Computer Op 18-34 LMIS Bus Sys Dev & Maint ^S 18-35 KSC Office Systems & Svc		15 9 18 26	15 9 18 27		0 9 17 18	0 -1	-15 0 -1 -8
18-4X CONTRACT ADMINISTRATION		. 7	7	6	6	-1	-1

TABLE 7-3.- BUSINESS MANAGEMENT BREAKDOWN BY DEPARTMENT

DEPARTMENT: 10-01

NAME: SPC PROGRAM MANAGER

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROGRAM MANAGER

MANAGEMENT/DIRECT SPC

DEPUTY MANAGER

MANAGEMENT/DIRECT SPC

PRODUCTIVITY DIRECTOR

PRODUCTIVITY/MANAGE PRODUCTIVITY PROGRAM

TECHNICAL STAFF

TECHNICAL ASSISTANT/WORKS SPECIAL PROJECTS

FOR PROGRAM MANAGER

CLERICAL

CLERK

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER OF FUNCTIONS TO 10-06

DELTA: -8

TABLE 7-3.- CONTINUED

DEPARTMENT: 10-03

NAME: DIR, PUBLIC AFFAIRS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT/PAO WORKING LEVEL DIRECTOR

EDITOR COMPANY PAPER

EDITOR

PUBLIC RELATIONS COORD.

PUBLIC RELATIONS ON THE SPC

CLERICAL

CLERK

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: NO CHANGE

, -----

DEPARTMENT: 10-04

NAME: COMPANY COUNSEL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

LAWYER

LAW/SPC LEGAL SUPPORT

LEGAL ASSISTANT

LAW

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: NO CHANGE

TABLE 7-3.- CONTINUED

DEPARTMENT: 10-06

NAME: MGR, ADMIN & MGMT PLNG

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

SUPERVISION

MANAGER

PREPARE SPIS

COORDINATOR FOR STANDARD PRACTICE INSTRUCTIONS (SPI) (APPROX. 400 RELEASED TO DATE)

DEVELOP MDs/MPs

COORDINATOR FOR MANAGEMENT DIRECTIVES (MDs) AND MANAGEMENT PROCEDURES (MPS) (APPROX. 161 MDs AND MPs RELEASED TO DATE)

MAINTAIN MANUAL DISTRIBUTION

CLERK

COMPUTER OPERATOR

WORD PROCESSING

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER OF FUNCTIONS TO 10-01

DELTA: +8

DEPARTMENT: 13-01

NAME: DIR, HUMAN RESOURCES

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

DEPUTY DIRECTOR

MANAGEMENT

SECRETARY

CLERICAL

H/R DATA BASE REP

H/R SPECIALIST

SPECIAL PROJECTS REP

H/R SPECIALIST

ADMIN PERSONNEL

ADMINISTRATIVE

SPECIAL SECURITY

DOD SECURITY

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O INTERNAL TRANSFERS FROM 13-10, 13-20, 13-50

DELTA: +3

TABLE 7-3.- CONTINUED

DEPARTMENT: 13-10

NAME: MGR, EMPLOYMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

RECRUITMENT

RECRUITER

PERSONNEL RELOCATION

RELOCATION OF PERSONNEL

ADMINISTRATIVE/CLERICAL

CLERICAL/ADMINISTRATIVE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER TO 13-01

DELTA: -1

7-13

DEPARTMENT: 13-20

NAME: MGR, COMPENSATION/BENEFITS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

BENEFITS ADMINISTRATOR

BENEFITS ADMINISTRATION

COMPENSATION ADMINISTRATOR

COMPENSATION

CLERICAL

CLERICAL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER TO 13-01

DELTA: -1

TABLE 7-3.- CONTINUED

DEPARTMENT: 13-30

NAME: MGR, SECURITY

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

SECRETARY

CLERICAL

INVESTIGATIVE REPRESENTATIVE

SECURITY

PERSONNEL SECURITY

SECURITY

INFORMATION SECURITY

SECURITY

COMMUNICATION SECURITY

SECURITY

PHYSICAL AND TECHNICAL SECURITY

TECHNICAL SECURITY

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

--

DEPARTMENT: 13-40

NAME: MGR, SALARIED PERS RELATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

EMPLOYEE RELATIONS

PERSONNEL SPECIALIST

EMPLOYEE SERVICES

EMPLOYEE SPECIALIST

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

TABLE 7-3.- CONTINUED

DEPARTMENT: 13-50

NAME: MGR, HUMAN RES DEVELOPMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

MANAGEMENT TRAINING

TRAINING SPECIALIST

ADMINISTRATIVE/CLERICAL

ADMINISTRATIVE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER TO 13-01

DELTA: -1

DEPARTMENT: 13-60	NAME: MGR, EEO
FUNCTION/TASK	MANPOWER DRIVER (SKILLS)
REPRESENTATIVE	EQUAL EMPLOYMENT
CLERICAL	CLERICAL
MANPOW	R IMPACTS RESULTING FROM POST STS 51-L STUDIES

TABLE 7-3 CONTINUED						
EPARTMENT: 13-70	NAME: MGR, LABOR RELATIONS					
UNCTION/TASK	MANPOWER DRIVER (SKILLS)					
ABOR RELATIONS REPRESENTATIVE	LABOR RELATIONS					
MANDOWED THOS	CTS RESULTING FROM POST STS 51-L STUDIES					
MANTONEN INTA	ICI3 KESOCITED FROM FOST STS ST-E STODIES					

DEPARTMENT: 18-01

NAME: DIR, BUSINESS MANAGEMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

STAFF ASSISTANT

PROGRAM PLANNING

SECRETARY

CLERICAL/BUDGET

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

MOVED TO INDIRECT POOL

DELTA: -13

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-06

NAME: DIR, NEW BUSINESS & ACQUISITION MGT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

DEPARTMENT: 18-10

NAME: DIR, ACCTG & FINANCIAL CONTROLS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

ADMINISTRATIVE/FINANCIAL

ADMINISTRATIVE ASSOCIATE

ADMINISTRATIVE

STAFF SPECIALIST

ADMINISTRATIVE

INTERNAL ACCOUNTING CONTROLS

ADMINISTRATIVE/ACCOUNTING

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-11

NAME: CHIEF ACCOUNTANT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

CHIEF ACCOUNTANT

ADMINISTRATIVE/ACCOUNTING

ACCOUNTING/FINANCIAL/TAXES

SECRETARY

CLERICAL

ACCOUNTS PAYABLE

ACCOUNTING

PAYROLL

ACCOUNTING

FINANCIAL ACCOUNTING

TERMINAL OPERATORS

ACCOUNTING

CASH OPS/INVOICING

ACCOUNTING

CASHIER/TRAVEL ACCOUNTING

DATA ENTRY

.

DELTA: -2

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TABLE 7-3.- CONTINUED NAME: MGR, FINANCIAL CONTROLS DEPARTMENT: 18-12 MANPOWER DRIVER (SKILLS) FUNCTION/TASK ADMINISTRATIVE/FINANCIAL SUPERVISOR ADMINISTRATIVE SECRETARY FINANCIAL FINANCIAL ANALYSIS FINANCIAL PRICING AUDIT LABOR SURVEILLANCE MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES DELTA: -2

	TABLE 7-3 CONTINUED		
DEPARTMENT: 18-13	NAME: MGR, FINANCIAL PLANNING		
FUNCTION/TASK	MANPOWER DRIVER (SKILLS)		
SUPERVISOR	ADMINISTRATIVE/FINANCIAL		
ANALYSTS	FINANCIAL		
MANPOW	ER IMPACTS RESULTING FROM POST STS 51-L STUDIES		
٠.		DELTA: +	

DEPARTMENT: 18-20

NAME: DIR, PROGRAM CONTROLS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

DEPUTY FOR BUDGET MANAGEMENT

MANAGEMENT

DEPUTY FOR CONFIGURATION MANAGEMENT

MANAGEMENT

SECRETARY

CLERICAL

PROGRAM INTEGRATION

SCHEDULERS & WORK FLOW COORDINATION

STAFF ASSISTANT

PROGRAM PLANNER

DATA MANAGEMENT SPECIALIST

DOCUMENT SPECIALIST

PROGRAM ASSESSMENT

AUDITOR/ASSESSOR

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER OF FUNCTIONS FROM 18-22

DELTA: +8

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-21

NAME: MGR, KSC GRND RORMTS PLNG CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

SECRETARY

CLERICAL

DOD CERTIFICATION

CM ANALYST

REQUIREMENTS ANALYSIS

SUPERVISOR

MANAGEMENT/ADMIN

LEVEL III CCB SUPPORT

CM ANALYST

TECHNICAL SUPPORT

ENGINEER

CHANGE MANAGEMENT & INTEGRATION SYSTEM

SUPERVISOR

MANAGEMENT/ADMINISTRATOR

CHANGE MANAGEMENT

CM ANALYST & CLERICAL

INTEGRATED SUPPORT

CM ANALYST

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

DEPARTMENT: 18-22

NAME: MGR, PROGRAM BUDGET PLNG & CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

SUPERVISOR

SUPERVISOR

CLERICAL/ADMINISTRAT ION

ADMINISTRATIVE

BUDGET PLANNING

BUDGET ANALYST

OPERATIONS PLANNING & CONTROL & AUDIT

MANAGEMENT SYSTEMS ANALYST

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER OF FUNCTIONS FROM 18-20

DELTA: -7

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-23

NAME: MGR, PROGRAM MGMT SYSTEMS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

MANAGEMENT SYSTEMS & ANALYSIS

SUPERVISOR

RESOURCE INFORMATION AND SUPPORT

SUPERVISOR

ADMIN SUPPORT

SECRETARY

PROG/PROJ MEAS & ANALYSIS

MGMT SYSTEMS ANALYST .

RESOURCE/PERFORMANCE SYSTEM

MGMT SYSTEMS ANALYST

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER TO 18-24 CONFIGURATION MANAGEMENT

DELTA: -2

DEPARTMENT: 18-24

NAME: CONFIG. ACCTG & VERIF.

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

PRODUCTION CONTROL

COMPUTER OPERATOR

OPERATIONS

COMPUTER OPERATORS

SYSTEM MAINTENANCE

PROGRAMMER/OPERATOR

ADMIN AND SUBCONTRACT MGMT

BUSINESS & SYSTEM ANALYSTS

ADMIN SERVICES

CLERICAL/ADMIN

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +31

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-25

NAME: MGR, PROPOSAL MGMT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

PROGRAM PLANNING SPECIALIST

PROPOSAL COORD & DEVELOPMENT

SECRETARY

CLERICAL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +1

DEPARTMENT: 18-26

NAME: MGR, KSC FLT RORMTS PLNG & CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER

MANAGEMENT

SUPERVISORS

MANAGEMENT/ADMINISTRATIVE

SECRETARY

CLERICAL

VEHICLE REQUIREMENTS

ENGINEER SPECIALIST

LAUNCH OPERATIONS ORDER

ENGINEER SPECIALIST

CHANGE CONTROL GROUP

PROGRAM PLANNING ANALYST

MANIFEST PLANNING

ENGINEER SPECIALIST

ARTEMIS

OPERATIONS PLANNING ASSOCIATE

SOFTWARE DATA PROCESSOR

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +5

TABLE 7-3.- CONTINUED

DEPARTMENT: 18-27

NAME: MGR. FIELD OFFICES

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

JSC MANAGER

MANAGEMENT

SECRETARY

· CLERICAL

MSFC MANAGER

MANAGEMENT

SECRETARY

CLERICAL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +1

TABLE 7-3.- CONTINUED NAME: MGR, LMIS BUSINESS COMPUTER OPNS DEPARTMENT: 18-30, 32 MANPOWER DRIVER (SKILLS) FUNCTION/TASK TECHNICAL MANAGEMENT OF ADP SYSTEMS, HARDWARE, MANAGER/SUPERVISOR & FACILITIES COMPUTER OPERATOR PRODUCTION CONTROL COMPUTER OPERATOR/SYSTEM PROGRAMMER SYSTEM MAINTENANCE COMPUTER OPERATOR **OPERATIONS** MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES O TRANSFER TO NEW DEPT. 18-24, CONFIG. ACCTG. & VERIF. DELTA: -15

DEPARTMENT: 18-34	NAME: MGR, LMIS BUSINESS SYS DEV & MAINT
FUNCTION/TASK	MANPOWER DRIVER (SKILLS)
MANAGER/SUPERVISOR	MANAGEMENT
SECRETARY	SECRETARIAL/ADMIN/DOC
PAYROLL/PERSONNEL	COMPUTER PROGRAMMER/ANALYST
FINANCIAL	COMPUTER PROGRAMMER/ANALYST
PERFORMANCE MEASUREMENT	
WANGOUGD	IMPACTS RESULTING FROM POST STS 51-L STUDIES

DEPARTMENT: 18-35

NAME: MGR, KSC OFFICE SYSTEMS & SERVICES

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

SUPERVISOR

MANAGEMENT

SECRETARY

CLERICAL/ADMIN DUTIES

ADMIN & SUBCONTRACT MGMT

BUSINESS & CONTRACT MGMT/SYSTEMS & ANALYSIS

TECHNICAL SERVICES

DATA DEVELOPMENT/PROCESSING

ADMINISTRATIVE SERVICES

ADMIN & CLERICAL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER TO NEW DEPT. 18-24 CONFIG. ACCTG. & VERIF.

DELTA: -8

TABLE 7-3.- CONCLUDED

DEPARTMENT: 18-40

NAME: DIR, CONTRACT ADMINISTRATION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

CONTRACTOR ADMINISTRATOR

CONTRACTS LAW & ACCOUNTING

PROGRAM PLANNER

PLANNING & TRACKING

SECRETARY

CLERICAL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: -1

7-25

7.3 II-XX SHUTTLE DATA SYSTEMS

The Shuttle Data Systems (SDS), shown in Figure 7-3, was formed after STS 51-L by transferring functions previously done in Process Engineering (LPS engineering) and in Business Management (Kennedy Data Management System (KDMS), now referred to as Shuttle Processing Data Management System (SPDMS)). SDS provides the technical engineering and manages the operations for the Shuttle Processing Data Management System. (Note that the Operations Control organization provides the test conductors who orchestrate the firing room operations and the backroom support, the Process Engineering organization mans the consoles in the firing rooms and Grumman operates and maintains the LPS hardware.)

The comparative pre-STS 51-L manpower levels for this organization was 460 E/P's (410 in headcount). In September 1987, the headcount is expected to be 372. A gradual increase throughout FY 1988, bringing the total to 415 by year end, is followed by further increases in FY 1989 to a level of 485. The justifications for the increase to 485 (490 E/P) are tied to the need to support new systems (e.g., Launch Team Training Simulation), new requirements in the LPS system software (FMEA's regression testing), closed loop OMRSD, and increased user support.

An SDS manpower bottoms-up analysis is shown in Table 7-4, and Table 7-5 details an SDS breakdown by department.

Figure 7-3.- Shuttle Data Systems organizational chart.

TABLE 7-5.- SHUTTLE DATA SYSTEMS BREAKDOWN BY DEPARTMENT

DEPARTMENT: 11-01

NAME: DIR, SHUTTLE DATA SYSTEMS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR, SHUTTLE DATA SYSTEMS

MANAGEMENT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 2

TABLE 7-5 .- CONTINUED

DEPARTMENT: 11-40, 11-41, 11-42, 11-43

NAME: DIR, LPS ENGRG S/W PRODN MGR, LPS ENGINEERING MGR, LPS APPLICATIONS MGR, LPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

SUSTAINING ENGINEERING FOR LPS OPERATING SYSTEM SOFTWARE

MAINTAINS 1000K LINES OF CODE FOR CCMS AND 300K LINES OF CODE FOR FPS

SUSTAINING ENGINEERING FOR LPS

SUSTAINING ENGINEERING FOR APPROXIMATELY

300 MINICOMPUTER SYSTEMS

HARDWARE

DEVELOPS AND MAINTAINS LPS APPLICATION

MAINTAINS 1700K LINES OF CODE FOR CDS AND 5200K LINES OF CODE FOR CCMS

MONTHLY CHANGE TRAFFIC

148 PRs, 284 GOAL UPDATES, 165 FSRs, 4 TCID BUILDS, 72,000 FUNCTIONS DESIGNATORS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

UPDATE AND MAINTAIN FMEAS (4 ENGINEERS)
PREPARE PROCEDURES RESULTING FROM OMRSD REQUIREMENTS (5 PERSONNEL)
REVIEW, VERIFY, DOCUMENT ALL ESA SOFTWARE (STS 51-L S/W REVIEW ITEM) (4 PERSONNEL)
CHANGE TRAFFIC INCREASING AS A RESULT OF STS 51-L SYSTEM REVIEWS (5 PERSONNEL)

DELTA: 18

DEPARTMENT: 11-50, 11-51, 11-52

NAME: DIR, SHUTTLE PROC DATA MGMT SYS MGR. KSC DATA BASE ADMIN & SYS ANAL MGR. SPDMS SOFTWARE DEVELOPMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE SOFTWARE DEVELOPMENT SUPPORT FOR PLANNING, CONTROLLING AND MANAGING GROUND OPERATIONS AND MAINTENANCE ACTIVITIES MAINTAIN 1000K LINES OF CODE

PROVIDES SYSTEM ENGINEERING SUPPORT TO SPOMS USERS FOR REQUIREMENT DEFINITION AND VALIDATION AND PROVIDES TRAINING FOR SPOMS APPROXIMATELY 200 USERS PER MONTH BEING TRAINED IN PRACA AND AGOSS

RESPOND TO 200 HELP CALLS/MONTH (1100 USERS ON SYSTEM)

CHANGE/MOD TRAFFIC/MONTH

5 LARGE ESRS

ACQUISITION PLANS, PROCUREMENT REQUESTS

I MAJOR ACQUISITION PLAN, 70 PURCHASE REQUESTS/MONTH 5 MAJOR RELEASES/MONTH

DATABASE ADMINISTRATION AND SOFTWARE CONFIGURATION CONTROL

10 SUBRELEASES FOR PRS/MONTH

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O ADDITIONAL INTERCENTER SUPPORT FOR ASRS, PRACA & OMRS CLOSED LOOP (+6 PERSONNEL)
O REMOTE VLS SUPPORT DUE TO VLS COMPUTERS BEING MOVED TO KSC TO MEET PROCESSING DEMANDS (+2)
O INCREASED DATA BASE ADMINISTRATION AND DATA DICTIONARY SUPPORT (+5 PERSONNEL)
O IMPLEMENT INFORMATION CENTER, RESOURCE MGMT, ADP PLANNING, HELP DESK (+9)
O INCREASE DEMAND FOR SPECIAL PROJECT SUPPORT (SPDM-II, AGOSS-II CONVERSION, PROCESS/CARGO/DESIGN ENGINEERING SUPPORT, LOGISTICS LASS, ETC.) (+10 PROGRAMMERS)
NEW REQUIREMENTS RESULTING FROM STS 51-L (CLOSED LOOP OMRSD)
O INCREASED S/W DEVELOPMENT ENHANCEMENTS, CONVERSIONS, ESRS (+18 PROGRAMMERS)

DELTA: +50

TABLE 7-5.- CONCLUDED

DEPARTMENT: 11-60

NAME: MGR, DATA SYSTEMS INTEGRATION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

RESPONSIBLE FOR GATHERING AND INTEGRATING USERS REQUIREMENTS

GENERATES AND MAINTAINS THE 1200 PAGE SPOMS REQUIREMENTS DOCUMENT

CONFIGURATION CONTROL FOR LPS AND SPOMS EMPLOYEE SERVICES

165 CCBDs, ESRs, EIs, OSCRs. TCTIs/MONTH, 23 BOARD MEETINGS/MONTH

RESOURCE MANAGEMENT OF LPS AND SPOMS COMPUTER RESOURCES

MANAGE 1100 USER IDs, WORK SPACE AND PERMISSIONS

MAINTAIN 16 SPIS

SOFTWARE QUALITY ASSURANCE FOR LPS AND SPDMS

140 PRs. 284 GOAL UPDATES

SECURITY

BADGING, SAFES

ESA AND FR2 OPERATIONS

228 DATA RETRIEVALS/MONTH

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASED SURVEILLANCE AND AUDIT OF LPS SOFTWARE FROM STS 51-L REVIEWS (OMRSD) (+2 PERSONS) INCREASED RESPONSIBILITY FOR ALL S/W QA (+1 PERSON) INCREASED USER SUPPORT (REQUIREMENTS, TRAINING, REPORT GENERATION & TROUBLESHOOTING) (+2 PERSON)

7.4 15-XX PAYLOAD INTEGRATION

Shuttle/Payload Integration's principal purpose is to perform launch site. on-line integration of STS payloads, experiments, and flight crew equipment into the Shuttle. A Shuttle Payload Integration organizational chart is included as Figure 7-4. 0&M engineering for payload support ground systems (e.g. the Payload Ground Handling Mechanism, the Payload Changeout Room. and the Takeoff (T-0) electrical lines at the Mobile Launch Platform (MLP) and the pad for mission-unique payload requirements). Landing site support for payloads is also furnished by this organization. The manning levels prior to STS 51-L averaged about 117 equivalents. The projected levels for 1990 are estimated at 142 equivalents. (Both figures include 4 indirects). In September 1987, the headcount level is anticipated to be 103. A year later, the comparable figure grows to 123. Comparing the pre-STS 51-L and the September 1989 levels, the major increases in manning fall into departments 15-30, Shuttle/Payload Integration Engineering (+13 EP), and 15-40. Shuttle/Payload Project Management (+12 EP). Most of the workforce personnel are on the first shift (108 headcount), with 21 and 12 on the second and third shifts, respectively. Examples of second and third shift requirements are the installation of flight crew systems and equipment. optical alignments of Orbiter systems and the Space Shuttle Vehicle (SSV). and the payload-to-Orbiter interface testing. In December 1985, only one person was assigned to the third shift staffing, and overtime ran approximately 10 percent.

The rationales given for the increased staffing were: additional coordination requirements and more rigorous and improved test operations procedures; increased coverage for payload engineering support to processing operations, increased engineering certification and training requirements, and additional workload due to increased numbers of DOD missions. LSOC personnel noted that they had not made a specific provision for a higher level of optional services in FY 1990 than was experienced prior to 51-L.

A significant level of detail was furnished the team on manpower drivers, but a correlation of the manpower increases to the rationales given was not provided. Accordingly, while acknowledging the qualitative changes in the character of the work performed, there is yet some question as to whether these changes justify the need for the entirety of the 20 percent requested increase in manning.

A Shuttle/Payload Integration bottoms-up analysis is shown in Table 7-6. Table 7-7 shows a breakdown by department.

Figure 7-4.- Shuttle/Payload Integration organizational chart.

TABLE 7-6.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS SHUTTLE/PAYLOAD INTEGRATION

		PRE-51L	:	FY199	- :	DELT	• •
NO. ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEADCOUNT	AVE EP	AVE HEROCOUNT	AVE EP
15-XX SHUTTLE/PRYLOAD INT	######################################		117	141	142		25 25
15-01 DIR, SHUTTLE/PL INT	1.10	8	9	4	4	-4	-5
15-10 CENTAUR PROJECT	1.10	2	2	3	3	1	1
15-20 SHUTTLE/PL INT OPS	1.10	21	23	26	26	5	3
15-30 SHUTTLE/PL INT ENG	1.10	48	53	65	66	17	13
15-40 SHUTTLE/PL REDHTS & INT	1.10	28	31	43	43	15	13

EPARTMENT: 15-01	÷	NAME: DIR, SHUTTLE/PAYLOAD INTEGR	
UNCTION/TASK		MANPOWER DRIVER (SKILLS)	
IANAGER, STAFF		MANAGEMENT AND ADMINISTRATION	
	٠		
	Ż		
1			
	MANPOWER IMPA	ACTS RESULTING FROM POST STS 51-L STUDIES	
O TRANSFER TO SUBORD	INATE DEPARTMENTS		
			DELTA: -4

TABLE	E 7-7 CONTINUED	
DEPARTMENT: 15-10	NAME: MGR, PAYLOAD GROUND SYSTEMS	
FUNCTION/TASK	MANPOWER DRIVER (SKILLS)	
COORDINATE/TRACK/MONITOR/DESIGN/IMPLEMENT MODIFICATION TO PAYLOAD RELATED FACILITIES AND GROUND SYSTEMS	24 PAYLOAD RELATED MODS MANDATORY FOR STS-26R WITH 36 ESRs	
	12 MODS/MISSION BY FY 90	
	AVERAGE OF 10/MISSIONS PRE 51-L	
•		
MANPOWER IMPACTS RES	ULTING FROM POST STS 51-L STUDIES	
INCREASED EMPHASIS ON GSE SAFETY/RELIABILITY		DELTA: +

DEPARTMENT: 15-20

NAME: MGR. SHUTTLE/PAYLOAD INTEGRATION OPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ON-LINE PAYLOAD OPERATIONS/INTEGRATION AND CONTROL: DEVELOP/COORDINATE SCHEDULES; DIRECT PAYLOAD, EXPERIMENT, OEX, FCE **OPERATIONS**

DRIVEN BY PROCESSING RATE/OPERATIONS GROUND RULES (5//3, 7/3 etc.) AND OVERTIME LIMITATIONS

- OPF

OFF-SITE LANDING SUPPORT: RECOVERY OF PAYLOAD, FCE, AND EXPERIMENTS AT OTHER THAN KSC LANDING SITES

DRIVEN BY FLIGHT RATE. PERSONNEL ASSIGNED FROM WITHIN 15-20 ON COLLATERAL BASIS

MISSION EQUIPMENT SUPPORT/COORDINATE/DIRECT
OFF-LINE PROCESSING OF PAYLOAD INTEGRATION
HARDWARE, FCE, DEX: COORDINATE/DIRECT ON-LINE
STORAGE AND DESTORAGE OF FCE/SUPPORT OFF-SITE FCE RECOVERY

DRIVEN BY LAUNCH RATE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- INCREASED COORDINATION AND REVIEW OF TOP'S, ABOUT 60 PER MISSION
- OVERTIME RESTRICTIONS (2)
 INCREASED VEHICLE TEST REQUIREMENTS DRIVES EXTENDED PRE-LAUNCH PROCESSING INTO MULTI-SHIFT OPERATIONS REQUIRING OPERATIONS ENGINEERING COVERAGE (2)
- ALL LANDINGS OFF-SITE INCREASED DOD MISSIONS FROM 2 TO 5 PER YEAR (1)

DELTA: +5

TABLE 7-7.- CONTINUED

DEPARTMENT: 15-30

NAME: MGR, SHUTTLE/PAYLOAD INTEGRATION ENGINEERING

- REQUIREMENTS PER MISSION - 1000 TOP PAGES PER MISSION - 4800

PROBLEM PAGES PER MISSION - 250

ON STATION TEST SUPPORT DEPENDS ON

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PERFORM REQUIREMENTS ASSESSMENT, DEVELOP TOP'S CONDUCT PROCESSING AND TEST OPERATIONS FOR:

- PAYLOAD INTEGRATION HARDWARE
 PAYLOAD BAY RECONFIGURATIONS
 ORBITER EXPERIMENTS
- FLIGHT CREW EQUIPMENT
- PAYLOAD/INSTALLATION/REMOVAL/HANDLING INTERFACE TESTING
- FLOW RATE AND OPERATIONS GROUND RULES

PERFORM OPTICAL ALIGNMENT FOR SHUTTLE ELEMENTS AND PAYLOADS

TOP PAGES PER FLOW - 45

OPERATIONS/MAINTENANCE ENGINEERING FOR PAYLOAD SUPPORT GROUND SYSTEMS

2 PADS/2 PGHMS/2 PCR'S/T-0 SYSTEMS TOP PAGES - 35 PAGES
PROBLEM DISPOSITION - 400 PAGES DATA COLLECTION - 500 PAGES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASE IN DOD MISSIONS (1)
ADDITIONAL TRAINING AND CERTIFICATION REQUIREMENTS (5)
ADDITIONAL TOP COORDINATION/CLOSED LOOP REQUIREMENTS/SUSTAINED CIL/TOP DESIGN CENTER REVIEW (3)
INCREASED EMPHASIS ON GSE
INCREASED ENGINEERING FLOOR COVERAGE REQUIREMENTS AND ADDITIONAL TESTING/FLOW TIMES (3) REDUCED OVERTIME (5)

DELTA: +17

7-35

TABLE 7-7.- CONCLUDED

DEPARTMENT: 15-40

NAME: MGR. SHUTTLE - PAYLOAD PROJECT MANAGEMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROJECT INTEGRATION: COORDINATE/OVERSEE
PAYLOAD REQUIREMENTS INTEGRATION; LEAD
LSOC PAYLOAD INTEGRATION (CAMS; COORDINATE
PROCESSING - TEST REQUIREMENTS

PROJECT ENGINEERING: TECHNICAL INTEGRATION
OF MULTI-SYSTEM PAYLOAD REQUIREMENTS;
REVIEW/ASSESSMENT OF REQUIREMENTS/
IMPLEMENTATION PLANS AND TOP'S: ON-LINE
PAYLOAD TEST PROJECT ENGINEERING SUPPORT

PROJECT PLANNING AND SUPPORT: PROCESS/
COORDINATE/CONTROL PAYLOAD MISSION
CONFIGURATION, TEST, AND SUPPORT
REQUIREMENTS: DEVELOP REQUIRED MISSION UNIQUE DOCUMENTATION

CONTAMINATION AND MATERIAL CONTROL:

DEVELOP/MAINTAIN LSOC/SPC CONTAMINATION
CONTROL PROGRAM FOR ORBITERS, PROCESSING
FACILITIES AND PAYLOADS

DRIVEN BY RATE - INCLUDES MISSIONS IN PROCESS AND PLANNING FOR FUTURE MISSIONS

DRIVEN BY RATE AND SUPPORT TO PAYLOAD INTEGRATION ENGINEERING. INCLUDES MISSIONS
IN PROCESS AND PLANNING FOR FUTURE MISSIONS:
DOCUMENTATION - TOP'S: 60 PER MISSION
REQUIREMENTS: 5000 - 6000 PER MISSION

DRIVEN BY RATE, DOD DOCUMENTATION REQUIREMENTS, AND TOP COORDINATION

RESPONSIBLE FOR FIVE IMPLEMENTATION PLANS; 20 TOPS; AVG PROBLEMS/MISSION - 40; STAFFING REQUIRES CORE PLUS PROCESSING MANPOWER

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASED DOD MISSIONS (2)
INCREASED TRAINING AND CERTIFICATION REQUIREMENTS (3)
SUSTAINING CIL/TOP REVIEW FOR MISSION UNIQUE TOPS (2)
INCREASED TOP REVIEW/COORDINATION/CLOSED LOOP REPORTING REQUIREMENTS (2)
EXTENDED FLOW TIME/INCREASED ENGINEERING COVERAGE REQUIREMENTS (3) OVERTIME LIMITATIONS (3)

DELTA: +15

7.5 16-XX OPERATIONS CONTROL

The Operations Control organization, shown in Figure 7-5, was created to augment the planning, the scheduling, the analysis, and the conduct of operations. The Launch Control Complex operation provides the flow controllers and firing room test conductors, does OMI development, and has firing-room personnel training responsibility. This accounts for about 109 equivalents in FY 1990, an increase from 76 prior to STS 51-L. The key reasons for the increase were the new emphasis on training, including the implementation of the Launch Team Training System and the addition of site test conductors in the VAB.

Other than a small group of 15 Pan Am personnel doing operations analyses and the new 6 man operations control management staff, the Process Planning and Control (PP&C) department accounts for the remainder of the 464 E/P's planned for FY 1990. Prior to STS 51-L, the PP&C organization was staffed at an average level of 261 and worked about 13 percent overtime, for a total of 295 E/P's. Current planning calls for this group to increase in equivalents to the 333 level. Since this group does the integrated work control, planning, scheduling, and status reporting for the processing operations on a real-time basis, an element of this increase was justified by there being not only more processing work and formal reviews to support but also a realized need to improve the quality and timelines of status reporting, documentation control, and schedules.

An Operations Control bottoms-up analysis is shown in Table 7-8, followed by Table 7-9, a breakdown by department.

Figure 7-5.- Operations Control organizational chart.

TABLE 7-8.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS OPERATIONS CONTROL

	PRE-51L			FY1990		DELTA	
NO. ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEROCOUNT	RVE EP	RVE HEROCOUNT	AVE EP
16-XX OPERATIONS CONTROL	1.13 =======	345	389	******** * 459 ********	464	114 Execute:	75
16-01 OPERATION CONTROL STREE		0	0	6	6	6	6
16-02 LCC OPERATIONS	1.11	68	76	109	109	40	33
16-02 Staff 16-10 Test Operations 16-20 Test Services		3 48 17	9 54 19	9 91 24	9 82 24	0 33 7	0 29 5
16-03 PROCESS PLANNING & CTL	1.13	261	295	330	333	69	38
16-03 Staff 16-30 Plans & Scheduling 16-31 Multi-Flow Planning/SSE 16-32 Flow Processing 16-40 Integrated Mork Control 16-50 Integrated Process Ct1 16-60 Process Planning Staff 16-61 Planning Control & Reqts 16-62 Production & Release 16-70 Mork Control		5 20 18 12 73 20 3 17 33 60	6 23 20 14 82 23 3 19 37 68	5 4 21 45 87 21 4 34 50 59	5 4 21 45 88 21 4 94 51 60	14 1 1 17 17	-1 -19 1 32 5 -1 1 15 13 -8
20-XX PAR/OPERATIONS ANALYSIS	1.13	16	18	15	15	-1	-3

TABLE 7-9.- OPERATIONS CONTROL BREAKDOWN BY DEPARTMENT

DEPARTMENT: 16-01

NAME: OPERATIONS CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGE, DIRECT, INTEGRATE ALL OPERATIONAL ISSUES WITHIN SPC

SECRETARIAL STAFF

ADMINISTRATIVE STAFF

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DIRECTORATE ESTABLISHED TO ENHANCE INTEGRATION OF SPC PLANNING AND SCHEDULING FUNCTIONS

- ANOTHER LAYER OF MANAGEMENT IS REQUIRED DUE TO THE DIFFICULTY OF INTEGRATING OPERATIONS IN THE FIRING ROOM AND ON THE FLOOR OPERATIONS AT THE VAB/OPF/PAD FACILITIES
- O LCC COORDINATION WITH OTHER ELEMENTS WAS NOT BEING PERFORMED EFFECTIVELY & EFFICIENTLY PRE-51-L

DELTA: +6

TABLE 7-9.- CONTINUED

DEPARTMENT: 16-02

NAME: DIRECTOR, LCC OPERATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

SECRETARY

CLERICAL

TECHNICAL STAFF

TECHNICAL ASSISTANCE PROVIDED TO CONDUCT SPECIAL STUDIES

AND PREPARE MANAGEMENT REPORTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

DEPARTMENT: 16-03

NAME: DIR, PROCESS PLANNING & CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

MANAGEMENT

DEPUTY

MANAGEMENT

SECRETARY

CLERICAL

TECHNICAL STAFF

TECHNICAL ASSISTANCE PROVIDED TO CONDUCT SPECIAL STUDIES

(e.g., AUTOMATION STUDIES, SPDMS, WORK CONTROL)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

TABLE 7-9 .- CONTINUED

DEPARTMENT: 16-10, 16-20

NAME: MGR, TEST OPERATIONS MGR, TEST SERVICES

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

TEST OPERATIONS

TEST DIRECTORS SUPPORT ALL LC-39 OPERATIONS

TEST DIRECTORS
ORBITER TEST CONDUCTOR
TANK/BOOSTER TEST CONDUCTOR
CARGO/OMI INTEGRATION
FLOW/SITE OPERATIONS
TEST TEAM TRAINING

SINGLE POINT OF CONTACT BETWEEN TEST TEAM

MONITORS CERTIFICATION OF ALL FIRING ROOM
TEST TEAM PERSONNEL

APPROVES ALL OMI ICRS (30)

TEST SERVICES

COMPUTER SUPPORT VITT SUPPORT OPS CENTER SUPPORT STAFF THE SPC/NASA REALTIME
SCHEDULE AND EMERGENCY INFORMATION
DISTRIBUTION CENTER
REVIEMS, APPROVES, AND TRACKS ALL LCC
FACILITY MODIFICATIONS
DOCUMENTS MAJOR MILESTONE REVIEWS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

16-10 O ASSUMED NEW VAB PAD LEADER FUNCTION (9)
OFULL UP CONSOLE MANNING RATHER THAN MULTIPLE STATION COVERAGE BY ONE
OPERATOR TO INSURE ALL SYSTEMS MONITORING EXPERTISE (9)
O STAFFING FOR NEW LAUNCH TEAM TRAINING AND CERTIFICATION PROGRAM (9)
OVERTIME REDUCTION AND NEW OVERTIME REGULATIONS LIMITING HOURS AND
CONSECUTIVE WORK DAYS (6)

16-70 0 OVERTIME REDUCTION AND NEW OVERTIME REGULATIONS LIMITING HOURS AND CONSECUTIVE WORK DAYS (2)

O PROGRAM REQUIREMENTS FOR ADDITIONAL COMPUTER PRODUCTS TO SUPPORT LRR. PIPELINE, SOWG, ETC. (5)

DEPARTMENT: 16-30, 31, 32

NAME: MGR, PLANS & SCHEDULING MGR, MULT-FLOW PLNG/SCHED/ MGR, FLOW PROCESSING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DEVELOP/STATUS ORBITER MODIFICATIONS

SCHEOULES

SOME TASKS ARE FIRST SHIFT OPERATIONS AND ARE DRIVEN BY VEHICLE MODIFICATIONS AND CHANGES

PROVIDE OPF/HMF/OMRF OPEN ITEM STATUS

DEVELOP ORBITER STRUCTURAL INSPECTION SCHEDULES

DEVELOP MULTI-VEHICLE AND HARDWARE UTILIZATION SCHEDULES

DEVELOP NEAR TERM MANIFEST ASSESSMENTS CONDUCT OPEN ITEM AND CONSTRAINTS REVIEWS AND MAINTAIN CONSTRAINTS LIST

GSE/VEHICLE SCHEDULING COORDINATION ASSURE SCHEDULE TASK READINESS

SCHEDULING AT HMF FOR PODS/FRCS/TPS

DEVELOP, MAINTAIN AND STATUS TASK MINI SCHEDULES

CONDUCT SCHEDULING AND STATUS/PROBLEM IDENTIFICATION AND RESOLUTION MEETINGS

COORDINATE OUTSIDE SCHEDULE SUPPORT DEVELOP, MAINTAIN AND STATUS KICS AND FLOOR SCHEDULE

SOME TASKS IN DIRECT SUPPORT OF VEHICLE TESTING DO REQUIRE SECOND/THIRD SHIFT OPERATION

NUMBERS DRIVEN BY 3 OF ORBITERS IN OPF/OMRF AND AMOUNT
OF HAROWARE IN HMF AND NUMBER OF SHIFTS OF PROCESSING
ON EACH VEHICLE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TABLE 7-9.- CONTINUED

O GSE WORK CONTROL TRANSFERRED TO 16-40

DELTA: +20

O EXPECTED INCREASE IN PROGRESSIVE REQUIREMENTS ON ALL SHIFTS

NAME: MGR, INTEGRATED WORK CONTROL

MANPOWER DRIVER (SKILLS)

DEPARTMENT: 16-40

FUNCTION/TASK

COORDINATE OUTSIDE SCHEDULE SUPPORT SITE MODIFICATION SCHEDULING/STATUS

ASSURE SCHEDULE TASK READINESS

MAINTAIN/UTILIZE OPEN ITEM STATUS REPORT

GSE SCHEDULING

GSE AND FACILITY OPEN ITEMS STATUS FOR DISR

CONDUCT OPEN ITEMS AND CONSTRAINT REVIEWS AND MAINTAIN CONSTRAINTS LIST

COORDINATE SUPPORT/INTEGRATE SCHEDULING ACTIVITIES

DEVELOP AND STATUS ET/SRB MOD SCHEDULES

DRIVEN BY NUMBER OF LOCATIONS TO BE COVERED AND SHIFTS COVERAGE AT THOSE LOCATIONS

ALSO DRIVEN BY NUMBER OF GSE END ITEMS AND VOLUME OF WORK ON THESE

DEVELOP AND MAINTAIN DETAILED WORK SCHEDULES

DEVELOP, MAINTAIN, AND STATUS MINI SCHEDULES

CHAIR SCHEDULING MEETINGS AND STATUS/PROBLEM IDENTIFICATION MEETINGS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

GSE WORK CONTROL TRANSFERRED IN FROM 16-30/31/32

DEPARTMENT: 16-50

NAME: MGR, INTEGRATED PROCESSING CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PREPARATION, PUBLICATION AND DISTRIBUTION OF THE KSC INTEGRATED CONTROL SCHEDULE (KICS)

DRIVEN BY THIS NUMBER OF SCHEDULES TO MAINTAIN, THE NUMBER OF AS-RUNS TO BE DEVELOPED AND THE NUMBER OF SPECIAL STUDIES

RESOLUTION OF SCHEDULE AND SUPPORT CONFLICT;
BETWEEN SPC SITES, BETWEEN SPC AND OTHER
CONTRACTORS, AND BETWEEN SPC ELEMENTS

PERSONNEL ON FIRST SHIFT EXCEPT DURING CRITICAL PAD PRELAUNCH OPERATIONS

DEVELOPMENT OF IMPACT ASSESSMENTS AND/OR RECOVERY SCHEDULES WHEN PROBLEMS ARISE OR WHEN MANIFEST CHANGES ARE PROPOSED

PREPARATION, PUBLICATION AND DISTRIBUTION OF THE AS-RUN SCHEDULES FOR SHUTTLE FLOWS

PREPARATION AND PUBLICATION OF SPECIAL SCHEDULES AS REQUIRED BY SPC AND NASA MANAGEMENT.

CHAIR INTEGRATED SCHEDULE AND STATUS MEETINGS.

PROVIDE MANAGEMENT WITH INTEGRATED STATUS.

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +1

TABLE 7-9.- CONTINUED

DEPARTMENT: 16-60

NAME: MGR, PROCESS PLANNING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

RESPONSIBLE FOR OVERALL MANAGEMENT OF FUNCTIONS PERFORMED BY DEPARTMENT

FUNCTIONS PERFORMED BY ONE MANAGER, TWO SECRETARIES AND ONE ILLUSTRATOR, ON FIRST SHIFT ONLY

PROVIDE ILLUSTRATION SUPPORT FOR PP&C

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +1

THIS NUMBER IS FOR DEPARTMENT, NOT STAFF

DEPARTMENT: 16-61

NAME: MGR, PLANNING CONTROL & REQUIREMENTS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROCESS REQUIREMENTS CHANGE NOTICES (RCNs)
AND WAIVERS/EXCEPTIONS TO OPERATIONS
AND MAINTENANCE REQUIREMENTS AND
SPECIFICATIONS (OMRS)

MANPOWEP DRIVEN BY LAUNCH RATE

MAINTAIN OMRS OPERATIONS AND MAINTENANCE PLAN (OMP) DATA BASE

DEVELOP, MAINTAIN AND DISTRIBUTE PROCESSING SUPPORT PLAN (PSP)

MAINTAIN STANDARD TASK FILE (STF) COMPRISED OF ALL SHUTILE PROCESS TASKS

IS ALSO DRIVEN BY NUMBER OF CHANGES REQUIRED FOR A SPECIFIC FLOW

PROVIDE OMP FOR EACH MISSION AND PROVIDE VERIFICATION OF OMRS ACCOMPLISHMENT

STATUS PROCESS PLANNING OMD DEVELOPMENT/ RELEASE

OPERATE COMPUTERS/PRINTERS THAT SUPPORT OMD PRODUCTION

MANPONER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O EXPECTED INCREASE IN CHANGE CONTROL WORKLOAD

DELTA: +17

TABLE 7-9.- CONTINUED

DEPARTMENT: 16-62

NAME: MGR, PRODUCTION RELEASE

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DEVELOP, MAINTAIN AND DISTRIBUTE OPERATIONS AND MAINTENANCE DOCUMENTATION INCLUDING OMIS, OMS, ICRS, AND JOB CARDS AND PROCESS OMI SUMMARY SHEETS

MANPOWER IS DRIVEN BY LAUNCH RATE, BY RATE, BY PAYLOAD, BY NUMBER OF CHANGES PER FLOW, AND BY REAL-TIME CHANGES.

ISSUE OMI, TEST PREPARATION SHEET (TPS) AND SUPPORT EQUIPMENT MOVE AUTHORIZATION (SEMA) NUMBERS

SOME IS DRIVEN BY QUANTITY OF GSE AND HARDWARE AT KSC.

PREPARE TECHNICAL OPERATING PROCEDURES (TOPs)
AND ASSOCIATED HANDBOOKS

ASSEMBLE, RELEASE, AND TRACK TEST AND INSPECTION RECORD (TAIR) BOOKS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O EXPECTED INCREASE IN REAL TIME WORK

DEPARTMENT: 16-70

NAME: MGR, WORK CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

RELEASES ALL PAPER TO THE QUALITY TAIR STATIONS

MANPOWER DRIVEN BY:

AMOUNT OF GSE AT KSC

VOLUME OF WORK - # OF VEHICLES IN

FLOW AND LAUNCH RATE

MANAGES THE RMRS SYSTEM

SHIFT COVERAGE REQUIRED TO SUPPORT PROCESSING

SERVES AS THE DATA MANAGER FOR ALL AUTOGOSS USERS

RESPONSIBLE FOR UPDATING THE DISR BASED UPON INPUTS AND REDLINES FROM THE VEHICLE AND GSE PLANNING AND SCHEDULING ORGANIZATIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: -1

TABLE 7-9.- CONCLUDED

DEPARTMENT: 20-XX

NAME: DIR, OPERATIONS ANALYSIS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DEVELOP & FACILITATE IMPROVEMENTS IN SPC PLANNING, SCHEDULING, AND WORK CONTROL MANPOWER DRIVEN BY NEED TO WORK WITH MULTIPLE PP & C FUNCTIONS TO IDENTIFY REQUIREMENTS & RECOMMEND ENHANCEMENTS

ANALYZE GSE MAINTENANCE & OPERATIONAL REQUIREMENTS TO ENHANCE SPC UTILIZATION

PROVIDE OPERATIONS ANALYSIS SUPPORT TO INTEGRATE ORGANIZATIONS/FUNCTIONS TO ENHANCE QUALITY

ANALYZE PROCESSING FLOWS TO DETERMINE CRITICAL PATH & KEY PROCESSING FACTORS

PROVIDE TECHNICAL SUPPORT TO IMPLEMENT OMRSD V30, V31, AND V32 FILE REQUIREMENTS

PROVIDE SRM & QA THROUGH FUNCTIONAL ANALYSIS AND OPERATIONAL IMPROVEMENTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

LESS APPLICABILITY OF AIRLINE OPERATIONS IN NEW LAUNCH ENVIRONMENT

DELTA: -1

7.6 17-XX SHUTTLE AND GROUND SUPPORT ENGINEERING

Shuttle and Ground Support Engineering organization is depicted in Figure 7-6. A manpower bottoms-up analysis of total engineering is shown in Table 7-10, and Table 7-11 breaks down engineering by department. For discussion purposes, Sustaining Engineering refers to the Ground Systems Design Engineering organization, and Process Engineering refers to all other organizations and personnel in Shuttle and Ground Support Engineering.

7.6.1 Process Engineering

Process Engineering (PE) provides direct engineering support for all processing activities. PE personnel support the geographically dispersed processing facilities (e.g., the OPF, the Horizontal Mating Facility (HMF), the VAB, the pads, Hangar AF, the LCC, and primary and contingency landing sites). Prior to STS 51-L, the overtime required for the 211 electrical/mechanical systems and the 214 fluid/mechanical systems engineers supporting the OPF activities averaged between 12 percent and 23 percent across the six departments, with a maximum weekly peak of 31 percent. The organization's monthly work volume indicators for the fourth quarter of calendar year 1985 show than an average of 3,429 unplanned, real-time work authorization documents required PE preparation, disposition, and closure, excluding tile work which required another 2,500 documents. Resolutions of inflight anomalies average 30 per month, and change assessments to the configuration and/or requirements amounted to 258 change packages per month. The LSOC representative indicated that the unplanned work consumed a large amount of manpower.

As noted previously, one of the major program changes resulting from the post-Challenger reviews was to increase the level of engineering involvement in all operational aspects. Having process engineers on the OPF floor to cover 7/3's represents a significant change. LCC console manning guidelines have been changed to assure a prime and a backup engineer both being on station. Test requirements have increased. The change system has become considerably more rigorous, particularly for GSE, with greater interface requirements with the design centers. In addition, the renewed emphasis on training has been estimated to consume between 5 percent and 8 percent of an engineer's time.

The team was furnished the LSOC analysis of the October-December 1985 workload vs. manpower experience which indicates that approximately 87 of the 587 average equivalents should be discounted for such items as Centaur modifications, Pad-B validations, and Vandenberg Launch and Landing Site (VLS) support. The net 500 equivalents compare to the 850 equivalents (842 headcount) planned to be reached by July 1989. (At the end of FY 87, 662 headcount; at the end of FY 88, 720 headcount.) This increase is broken down as follows: (1) About 62 employees of this increase, from a level of 318 EP's to 390, will be for direct support to vehicle processing. (2) Vehicle mods support accounts for 20 (was 23, planned 43); this increase was justified on the basis that the reference period was one during which opportunity mods were being accumulated because there wasn't time to

implement them. (LSOC believes that a change in the program approach to carry out opportunity mods in a block mod period, probably coincident with structural inspections, would be a more efficient use of manpower.) previously indicated, there is now a specific provision for training overhead impacts on staffing; this accounts for the increase from a level of 4 E/P's at present to 66 E/P's in FY 1990. (4) In the area of engineering support for GSE maintenance, the manpower estimates indicate an increase of 52, from 73 to 125. This delta was explained as being tied to a major change in attitude toward the criticality of GSE. For example, LSOC plans on having the preventative maintenance OMI's on GSE reworked and increasing the level of routine maintenance instead of deferring this work as was the case prior to STS 51-L. The revised manpower estimates also allow for the increased GSE change interface requirements with Level II and the need for taking waivers to local change boards versus having the responsible engineer disposition the waiver. (5) Provision for GSE modifications support showed an increase of 29 (was 6, new plan 35); the reference period, however, had about 30 engineers working on the activation of pad-B and MLP-3 and a large backlog of modifications on GSE designed by Rockwell and GSE designed by KSC/Design Engineering was being allowed to accumulate. (6) The remainder of the total increase, about 90, from 95 in the pre-STS 51-L period to 185 in FY 1990, was justified in having a new computer system required support (+7), in providing for ongoing enhancements (e.g., the new tile engineering tracking system) and in generating OMI's for Line Replaceable Unit (LRU) and LRU testing, and on the increase in management and staff associated with strengthening management oversight and managing the larger PE workforce.

7.6.2 Ground Systems Design Engineering (Sustaining Engineering)

Sustaining engineering provides the design engineering support for KSC ground systems. This includes planning, requirements analysis, design, budget formulation, scheduling, and execution of engineering for all assigned KSC-provisioned Shuttle ground facilities, systems and equipment. The actual work is carried out by the Support Operations organization, either with LSOC technicians or by subcontracting the work.

Prior to STS 51-L, KSC's Design Engineering Directorate had employed PRC and other contractors to execute facility and equipment new designs and modifications. This has now been made an SPC responsibility. This transfer accounts for almost 100 workers in the growth of manning levels from a pre-STS 51-L average of 135 (86 Shuttle operations DEQ's) to a current level of 350. The current level is projected to remain nearly constant throughout FY 1988-1989, with the Shuttle Operations DEQ's at 324 in FY 1990. These projections assume, however, that no new facility or major modifications are authorized.

At present, much of the SPC sustaining engineering workforce is occupied in carrying out the return to flight status (RTFS) modifications. The backlog of category 2 modifications is increasing, due to the RTFS work, from 527 outstanding engineering support requests (ESR's) in January 1986 to a current backlog of 1,050 ESR's. LSOC estimates that an average ESR requires 100 hours of design time and 40 hours to assess. With a design engineering

group of approximately 225 persons and an assessment group of about 120 persons, it is clear that the current (and projected) manning levels will not allow the existing backlog of ESR's to be worked off. Discussions with LSOC personnel also indicate that the lack of automated tools, such as Computer Aided Design/Computer Aided Engineering (CAD/CAE), make this a more manpower-intensive operation than it could be.

In addition, discussions with KSC and SPC personnel indicate that the deficiency pointed out in the post-STS 51-L reviews of having facility design drawings with up to 100 Engineering Orders (ED's) (8 to 10 EO's is considered reasonable) will not be workable until after Shuttle flights resume in June 1988. When asked why the present manpower level is considered acceptable, KSC and SPC personnel revealed that a manning level of almost 500 had been requested by cognizant personnel. This higher level was rejected due to affordability concerns. (Note that if more ESR's were processed, there would be a concommitant increase in either SPC Support Operations manpower or subcontract costs, plus material costs, to implement the changes.)

Figure 7-6.- Shuttle and Ground Support Engineering organizational chart.

TABLE 7-10.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS SHUTTLE & GROUND SUPPORT ENGINEERING

		PRE-SIL		FY1990		DELTA		
NO.	ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEADCOUNT	AVE EP	AVE HEADCOUNT	AVE EP
17-XX	TOTAL ENGINEERING	1.12	647	725	1166 2222222 2	1178	519	452
17-0X	MANAGEMENT & STAFF	1.04	23	24	29	29	6	5
17-02 17-03	MANAGEMENT & STAFF ENGINEERING INTEGRATION PROCESS SYSTEMS ENGRG GROUND SYS DESIGN ENGRG	1.04	15 0 0	16 0 0	2 2	13 2 2 12	2 2	-3 2 2
17-1X	PROJ ENGRG & TEST INT	1.17	52	61	90	91	36	30
17-11	PROJ ENGRG & TEST INT TEST PROJECT ENGINEERING PROJECT ENGINEERING	1.17	52 0 0	61 0 0	2 29 59	2 29 60	29	-59 29 60
17-2X	ELECT/HECHANICAL SYS ENG	1.15	237	271	371	375	134	104
17-22 17-23	ELECT/MECHRNICAL SYS ENG Elect/Telecomm Sys Rvionics Sys Orbiter Mech/6SE Sys	1.02 1.12 1.14 1.23		20 106 66 79	149	2 150 94 128		-18 44 28 49
17-57	FLUID/HECHANICAL SYS ENG	1.14	194	221	331	334	137	113
17-51 17-51) FLUID/MECHANICAL SYS ENG Fluid Sys MPS/Cryo Sys Pad/Mechanical Sys		2 78 72 42	2 89 82 48		2 128 118 86	0 49 45 43	0 39 36 38
17-6	ENGINEERING TECHNOLOGY	1.00	5	5	6	6	1 	1
17-7	SITE LIRISON	1.11	9	10	27	27	18	17
17-8	X PROJECT HANAGEMENT	1.04	46	49	115	116	69	67
17-8	O Project Integration 1 GSE Projects 2 Facility Projects		3 26 17	4 27 18	: 46	24 46 45	21 20 29	20 19 27
17-9	X DESIGN ENGINEERING	1.04	81	84	197	199	116	114
17-9 17-9	O Director DE 1 Facility Sys & Equipment 2 Mechanical/Fluid Design 3 Electrical Design		2 10 42 27	2 11 44 29	36	2 36 103 58	26 60	0 26 59 29

TABLE 7-11.- SHUTTLE AND GROUND SUPPORT ENGINEERING BREAKDOWN BY DEPARTMENT

DEPARTMENT: 17-01, 02, 03

NAME: SHUTTLE, GRND SUPT ENGRG ENGRG INTEGRATION PROCESS SYS ENGRG

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGEMENT AND STAFF FOR SHUTTLE AND GROUND SUPPORT ENGINEERING DIRECTORATE

ORGANIZATIONAL SIZE AND COMPLEXITY OF ENGINEERING FUNCTIONS

MANAGEMENT DIRECTION FOR ALL VEHICLE PROCESSING AND GSE/FACILITY ENGINEERING MAINTENANCE, TEST, AND DESIGN CHANGES

MANAGEMENT RESPONSIBILITIES

LAUNCH RATES

INCLUDES DEPARTMENT DIRECTORS FOR PROJECT ENGINEERING AND PROCESS SYSTEM ENGINEERING

INCLUDES ONE TECHNICAL STAFF FOR SPECIAL **PROJECTS**

PROVIDES TECHNICAL LEADERSHIP OF PROCESSING TEST TEAM FOR IDENTIFYING TIMELY ENGINEERING REQUIREMENTS AND PROBLEM RESOLUTION DURING PROCESSING

INCLUDES BUSINESS MANAGEMENT PERSONNEL FOR RESOURCE MANAGEMENT STATUS, BUSINESS MANAGEMENT STATUS, BUSINESS OPERATIONS, AND OVERALL ADMINISTRATIVE OPERATIONS OF DEPT 17

INCLUDES ALL DEPT 17-01 CLERICAL SUPPORT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

STAFF PERSON TRANSFERRED FROM DEPT 17-2X

DELTA: +2

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-10, 11, 12

NAME: PROJECT ENGINEERING & TEST INTEGRATION TEST PROJECT ENGINEERING PROJECT ENGINEERING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- INTEG CONSOLE SUPT FOR POWER-ON TESTING
 AND LANDING OPS
 TEST INTEG FOR GLS/LCC, ORBITER, ET, SRB,
 CARGO, EMU & MMU
 INTEG FUNCTION FOR L-1 DAY BRFGS, LCD
 SIMULATIONS, RCNS/BLDG 45s, OMI REVIEWS,
 FLT ANOMALY TRACKING, & SPECIAL TEST
 COORDINATION OF FLIGHT H/W ITEMS, MODS,
 AND VEHICLE PROC
 GSE SITE INTEG FOR OPF, OMRF, VAB, SHOPS
 & LABS, LANDING SITES, MLPS, PADS, & HMF
 INTEG FUNCTION FOR OVERALL OMRSD FILE MGMT
 & RCN/EXCEPTION/MAIVER PROC (INC FILE VI
 GRN OMRSD)

- & RCN/EXCEPTION/MATTER PROC (INC FILE VI GRN OMRSD) INTEG FUNCTION FOR RORMTS, ASSESSMENTS, PACKAGING & IMPLEMENTATION OF FLT/GRND APPLICATION S/M SYS ANAL FOR ALL SPC ENGRG. CONTINUOUSLY LOOKS FOR ENHANCEMENTS TO SHUTTLE PROCESSING (i.e., TILE AUTOMATION) TRAINING SERVICES FOR ALL OF SPC ENGRG PROCUREMENT, S/M DESIGN & O&M SUPPT TO THE PROCESS ENGINEERING COMPUTER SYSTEM (PECS)
- n

- O RATE OF FLOW PROC, LAUNCH, MISSION MONITORING & ANTE OF FLOW PROC, LAUNCH, MISSION MONITORING &
 LDG OPS
 AMT OF POMER ON TEST SUPT
 QTY & COMPLEXITY OF PROG RQMNTS (FOR INTEG)
 QTY OF VEHICLE/GSE MODS
 AMT OF INTEG REQD DUE TO DESIGN CHGS FOR FLT & GRD

- GRND OMRSD
 ENGRG ENHANCEMENTS, SYS ANALYSIS & TRNG SERVICES
 RORD FOR PROCESSING MAINTENANCE 0

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASED TEST REGTS
SUPPORT OPS (7X3 SHIFTING)
ADDED SIGNATURE FOR L III OVERSIGHT
CONSOLE MANNING GUIDELINE CHANGES

PAPERWORK & PREPAREDNESS COMM CHGS (INCL FILE VI OMRSD CLOSED LOOP) INCREASED LNDG SITE SUPPT AT DFRF TREAT GSE "MORE LIKE FLIGHT"

IMPROVED ENGRG TRNG

DEPARTMENT: 17-20

NAME: ELEC/MECH SYS ENGRG

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

O MANAGEMENT OF DEPTS

O PROCESSING WORKLOAD

17-22, 23 & 24

O SIZE OF ORGANIZATION

O IN ACCOMPLISHMENT OF TASKS/FUNCTIONS

O MANAGEMENT/ADMINISTRATIVE REPORTING ROMTS

PROCESS ENGRG REPRESENTATIVE TO THE OMD CONTROL BOARD

O FLOW FREQUENCY

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADMIN ASSISTANT CONSOLIDATED INTO 17-01

CLERK/EXPEDITORS LAID-OFF--FUNCTION ASSUMED/ABSORBED INTO SUBORDINATE DEPARTMENTS

DELTA: -18

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-22

NAME: ELEC/TELECOMM SYS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- PERFORMS VEHICLE & GSE SYS ENGRG FUNCTIONS/

 - PERFORMS VEHICLE & GSE SYS ENGRG FUNCTION
 TASKS OF
 1) WAD PREP/PROCESSING/CLOSURE
 2) GOAL APPLICATION S/W SUPPORT
 3) CONFIG/ROWIT CHANGE ASSESSMENTS
 4) SUBSYSTEM/INTEG TESTING/CIG RETEST
 5) DATA REVIEW & ANOMALY ID/RESOLUTION
 6) IPR/PR DISPOSITION/RETEST/CLOSURE
 7) DMI/JC MAINTENANCE
 8 SPECIAL TEST REQUESTS
 9 VEHICLE MODS/GSE MODS
 10) INFLIGHT ANOMALY RESOLUTION
 11) COMMIT TO LAUNCH
- O FOR THE FOLLOWING SYSTEMS: COMM & TRACKING (INC C&T STATION) INSTRUMENTATION & HAZ WARNING EPDC & PYRDS 800STER/GSE ELECTRICAL
- O MAINTAINS/OPERATES BATT LAB/FACT LAB

- O TEST REQUIREMENTS
- O NO OF VEHICLES IN FLOW
- O FLOW/FLIGHT RATE
- O WAD PREPARATION/CLOSURE REQUIREMENTS
- O DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT-OVERS (GHT
- O CRITICALITY OF/HAZARDS WITHIN SYSTEMS
- O LEVEL OF MANAGEMENT/PROGRAM REVIEW
- O SUPPORT TO CARGO

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TREAT GSE "MORE LIKE FLIGHT" IMPROVED ENGRG TRAINING (7.5%)
INCREASED TEST ROMTS SRB MODIFICATIONS (JOINT HEATERS PLUS DFI)
SUPT OPS (7X3) SHIFTING

INCREASED ENGRG ON FLOOR INCREASED WAD PREP/CLOSURE TIME ADDED SIGNATURES FOR LEVEL III OVERSIGHT CONSOLE MANNING GUIDELINE CHANGES

DEPARTMENT: 17-23

NAME: AVIONICS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/

 - S OF WAD PREP/PROCESSING/CLOSURE GOAL APPLICATIONS S/W SUPPORT CONFIG/ROMT CHANGE ASSESSMENTS SUBSYSTEM/INTEG TESTING/CIG RETEST DATA REVIEW & ANOMALY 10/RESOLUTION 1PR/PR DISPOSITION/RETEST/CLOSURE DMI/JC MAINTENANCE SPECIAL TEST REQUESTS VEHICLE MODS/GSE MODS INFLIGHT TO LABINCH 11) COMMIT TO LAUNCH
- FOR THE FOLLOWING SYSTEMS:
 DATA PROCESSING SYSTEM (+RMS)
 GN&C MECHAN I SMS FLIGHT SOFTWARE
- MAINTAIN/OPERATE KATS + DIGITAL LAB SUPPORT RMS OFF-LINE PROCESSING SUPPORT S/W DEVELOPMENT PROCESS COORDINATION OF SAIL UTILIZATION BY KSC

- O TEST REQUIREMENTS
- NO OF VEHICLES IN FLOW
- O FLOW/FLIGHT RATE
- O WAD PREPARATION/CLOSURE REQUIREMENTS
- DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT --OVERSIGHT
- O CRITICALITY OF/HAZARDS WITHIN SYSTEMS
- SHIFT COVERAGE FOR OPERATIONS
- LEVEL OF CHANGE WITHIN SYSTEM
- LEVEL OF MANAGEMENT/PROGRAM REVIEW
- O S/W DEVELOPMENT ACTIVITY
- O SAIL USE REQUIREMENTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

IMPROVED ENGRG TRAINING (8.5%)
INCREASED TEST ROMNTS
SUPPORT OPERATIONS (7%3) SHIFTING
INCREASED ENGRG ON THE FLOOR

INCREASED WAD PREPARATION/CLOSURE TIME ADDED SIGNATURES FOR LEVEL III CONSOLE MANNING GUIDELINE CHANGES INCREASED MGMT/PROGRAM REVIEW

DELTA: +35

TABLE 7-11. - CONTINUED

DEPARTMENT: 17-24

FUNCTION/TASK

NAME: ORBITER MECH/GSE SYSTEMS

MANPOWER DRIVER (SKILLS)

- PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/
 - TASKS OF
 1) WAD PREP/PROCESSING/CLOSURE
 2) GOAL APPLICATIONS S/W SUPPORT
 3) CONFIG/RQMT CHANGE ASSESSMENTS
 4) SUBSYSTEM/INTEG TESTING/CIG RETEST
 4) SUBSYSTEM/INTEG TESTING/CIG RETEST
 - 4 SUBSYSTEM/INTEG TESTING/CIG RETEST
 5 DATA REVIEW & ANOMALY ID/RESOLUTION
 6 IPR/PR DISPOSITION/RETEST/CLOSURE
 7 DMI/JSC MAINTENANCE
 8 SPECIAL TEST REQUESTS
 9 VEHICLE MODS/GSE MODS
 10 INFLIGHT ANOMALY RESOLUTION
 11 COMMIT TO LAUNCH
 FOR THE FOLLOWING SYSTEMS:
 STRUCTURES
- - STRUCTURES TPS/TCS (TILE) OPF GSE
- SUPPORT ALL ORBITER HANDLING OPNS SUPPORT GENERIC GSE PROJECTS SUCH AS PRESSURE VESSEL CERT & SHOP AID
- CONVERSIONS SUPPORT ALL VEHICLE H/W MOVE OPERATIONS

- TEST REQUIREMENTS
- NO OF VEHICLES IN FLOW
 FLOW/FLIGHT RATE
 WAD PREPARATION/CLOSURE REQUIREMENTS
 DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT
 --OVERSIGHT

- --OVERSIGHT
 CRITICALITY OF/HAZARDS WITHIN SYSTEMS
 SHIFT COVERAGE FOR OPERATIONS
 LEVEL OF CHANGE WITHIN SYSTEM
 LEVEL OF CHANGE WITHIN SYSTEM
 LEVEL OF MANAGEMENT/PROGRAM REVIEW
 GSE SPECIAL PROJECT ACTIVITY
 LEVEL OF ENGRG INVOLVEMENT IN ROUTINE TPS OP
 FREQUENCY OF PLANNED/UNPLANNED HANDLING/MOVE OPERATIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

REDEFINED TILE PROC PROCEDURES SIGNIFICANTLY INC ENGRG INVOLVEMENT (+24 ENGRS) IMPROVED ENGRG TRAINING (5%) SUPPORT OPERATIONS (7X3) SHIFTING INCREASED ENGRG ON FLOOR

INCREASED DERF LANDINGS
TREAT GSE "MORE LIKE FLI"
INCREASED WAD PREP/CLOS TIME
ADDED SIGNATURS FOR LEVEL III
STRUCTURAL/ZONAL INSP PROG IMPLE

GSE PRESS VESSEL CERT PROGRAM

DEPARTMENT: 17-50

NAME: FLUID/MECH SYSTEM

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

O MANAGEMENT OF DEPTS 17-51, 52 & 53

O PROCESS WORKLOAD

IN ACCOMPLISHMENT OF THEIR FUNCTIONS/TASKS O SIZE OF ORGANIZATION

PROCESS ENGRG REPRESENTATIVE TO THE INCIDENT O MANAGEMENT/ADMINISTRATIVE REPORTING ROMTS. ERROR REVIEW BOARD (IERB)

O LOW FREQUENCY

PROCESS ENGRG REPRESENTATIVE AT THE PRIME MATERIALS REVIEW BOARD

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-51

NAME: FLUIDS SYSTEMS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/

PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/
TASKS OF

1) WAD PREP/PROCESSING/CLOSURE
2) GOAL APPLICATIONS S/W SUPPORT
3) CONFIG/ROMT CHANGE ASSESSMENTS
4) SUBSYSTEM/INTEG TESTING/CIG RETEST
5) DATA REVIEW & ANOMALY ID/RESOLUTION
6) IPR/PR DISPOSITION/RETEST/CLOSURE
7) OMI/JC MAINTENANCE
8) SPECIAL TEST REQUESTS
9) VEHICLE MODS/GSE MODS
10) INFLIGHT ANOMALY RESOLUTION
11) COMMIT TO LAUNCH

O TEST REQUIREMENTS
O NO OF VEHICLES IN FLOW
O FLOW/FLIGHT RATE
O WAD PREPARATION/CLOSURE REQUIREMENTS
O DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT
--OVERSIGHT
O CRITICALITY OF/HAZARDS WITHIN SYSTEMS
O SHIFT COVERAGE FOR OPERATIONS
O LEVEL OF CHANGE WITHIN SYSTEM
O LEVEL OF MGMT/PROGRAM REVIEW
O CARGO SUPPORT ROMTS
O MISSION/FLIGHT DURATIONS
O NON-KSC LANDINGS

FOR THE FOLLOWING SYSTEMS:

ECLSS OMS/RCS

APU/HPU/HYDRAULICS
O MAINTAINS/OPERATES LIOH LAB
O MAINTAINS/USES HMF FOR OMS/RCS OFFLINE WORK

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TREAT GSE "MORE LIKE FLIGHT" IMPROVED ENGRG TRAINING (7.7%) INCREASED TEST ROMTS SUPPORT OPS (7X3) SHIFTING INCREASED ENGRG ON FLOOR

INCREASED WAD PREPARATION/CLOSURE TIME ADDED SIGNATURES FOR LEVEL III OVERSIGHT CONSOLE MANNING GUIDELINE CHANGES INCREASED DERC LANDINGS STRUCTURAL INSP & PRES VES CERT PROGRAM

DEPARTMENT: 17-52

NAME: MPS/CRYOGENIC SYSTEMS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/
 - TASKS OF
 - SOF WAD PREP/PROCESSING/CLOSURE
 GOAL APPLICATIONS S/W SUPPORT
 CONFIG/ROMT CHANGE ASSESSMENTS
 SUBSYSTEM/INTEG TESTING/CLIG RETEST
 DATA REVIEW & ANOMALY ID/RESOLUTION
 IPR/PR DISPOSITION/RESTEST/CLOSURE
 OMI/JC MAINTENANCE
 SPECIAL TEST REQUESTS
 VEHICLE MODS/GSE MODS
 INFIGHT ANOMALY RESOLUTION
 COMMIT TO LAUNCH
 - COMMIT TO LAUNCH
- FOR THE FOLLOWING SYSTEMS:

 MPS & SSME
 FUEL CELL/PRSD
 LOX/LH2
 ET PNEUMATICS
 SUPPORTS SSME SHOP W/ROCKETDYNE
 SUPPORTS PROPULSION SYSTEM INTEG GROUP FOR
 KYC (PSIG) KSC (PSIG)

Ó

- TEST REQUIREMENTS
 NO OF VEHICLES IN FLOW
 FLOW/FLIGHT RATE
 WAD PREPARATION/CLOSURE REQUIREMENTS O DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT
 --OVERSIGHT
 CRITICALITY OF/HAZARDS WITHIN SYSTEMS
 SHIFT COVERAGE FOR OPERATIONS
 LEVEL OF CHANGE WITHIN SYSTEM
 LEVEL OF CHANGE WITHIN SYSTEM
 LEVEL OF CHANGE WITHIN SYSTEM
 CARGO SUBPORT DOMES

- CARGO SUPPORT ROMTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TREAT GSE "MORE LIKE FLIGHT"
IMPROVED ENGRG TRAINING (11.3%)
INCREASED TEST ROMTS (MPS)
SUPPORT OPS (7X3) SHIFTING
INCREASED ENGRG ON FLOOR

INCREASED WAD PREPARATION/CLOSURE TIME ADDED SIGNATURES FOR LEVEL III OVERSIGHT CONSOLE MANNING GUIDELINE CHANGES INCREASED DFRC LANDINGS STRUCTURAL INSP & PRES VES CERT PROGRAM

DELTA: +45

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-53

NAME: PAD/MECHANICAL SYSTEMS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

TEST REQUIREMENTS

- PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/

 - PERFORMS VEHICLE & GSE ENGRG FUNCTIONS/
 TASKS OF

 1) WAD PREP/PROCESSING/CLOSURE
 2) GOAL APPLICATIONS S/W SUPPORT
 3) CONFIG/ROWT CHANGE ASSESSMENTS
 4) SUBSYSTEM/INTEG TESTING/CIG RETEST
 5) DATA REVIEW & ANOMALY ID/RESOLUTION
 6) IPR/PR DISPOSITION/RETEST/CLOSURE
 7) OMI/JC MAINTENANCE
 8) SPECIAL TEST REQUESTS
 9) VEHICLE MODS/CSE MODS
 10) INFLIGHT ANOMALY RESOLUTION
 11) COMMIT TO LAUNCH

 - COMMIT TO LAUNCH
- O FOR THE FOLLOWING SYSTEMS:

 LAUNCH ACCESSORIES

 ECS/PVD

 ET/SRB MECHANICAL
 O PRIMARY USER OF RPSF OFF-LINE PROCESSING
 O SUPPORTS ALL MOVE OPS FOR PURGE AIR RECONFIG
 O SUPPORTS TEST OPS IN LETF

TEST REQUIREMENTS NO OF VEHICLES IN FLOW FLOW/FLIGHT RATE WAD PREPARATION/CLOSURE REQUIREMENTS DESIGN CENTER/DEV CONTRACTOR INVOLVEMENT --OVERSIGHT CRITICALITY OF/HAZARDS WITHIN SYSTEMS SHIFT COVERAGE FOR OPERATIONS LEVEL OF CHANGE WITHIN SYSTEM LEVEL OF MGMT/PROGRAM REVIEW FREQUENCY OF VEHICLE MOVES ENGRG INVOLVEMENT IN SRB STACKING OPS SRB/ET BUILDUP TIMELINE LETF TEST ACTIVITY

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

TREAT GSE "MORE LIKE FLIGHT"
IMPROVED ENGRG TRAINING (9.0%)
'INCREASED TEST ROMTS (SRB)
SRB JOINT REDESIGN
SUPPORT OPS (7X3) SHIFTING

INCREASED ENGRG ON FLOOR
ADDED PROGRAMS SIGNATURES FOR LEVEL 111 OVERSIGHT
INCREASED WAD PREP/CLOSURE TIME
INCREASED DFRC LANDINGS
STRUCTURAL INSP & PRES VES CERT PROGRAM

DEPARTMENT: 17-60

NAME: ENGINEERING TECHNOLOGY

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- OVERALL STUDY FOR PROCESS ENGINEERING ENHANCEMENTS AND TECHNICAL TRAINING
- FREQUENCY AND COMPLEXITY OF LAUNCH TEAM SIMULATIONS
- CONCENTRATES ON FUTURE ENHANCEMENTS TO SPC ENGINEERING PROCESSING
- QUANTITY OF EFFORT DIRECTED TO DEVELOPMENT OF ENHANCEMENTS FOR PROGRAM BENEFIT
- PROJECTS INCLUDE SIMULATION TRAINING, KATS SUPPORT, ORBITER STRUCTURAL INSPECTION, TILE AUTOMATION (AWADS), AND SHUTTLE CONNECTOR ANALYSIS NETWORK (SCAN)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

THE PROJECTED MANPOWER SAVINGS FOR AUTOMATED WORK AUTHORIZATION DOCUMENTATION SYSTEM (AWADS) AND SHUTTLE CONNECTOR ANALYSIS NETWORK (SCAN) HAS ALREADY BEEN FACTORED INTO EACH DEPT 17 MANPOWER PROJECTION.

DELTA: +1

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-70

NAME: SITE LIAISON

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- ON-SITE ENGR FOR ALL OF SPC ENGRG--ALL SHIFTS, ALL VEHICLE SITES (LIAISON ENGRG)
- WORKS ENGRG INTERFACE PROBLEMS W/LOGISTICS
- & PP&C DISPOSITIONS SYS ENGRG PAPER W/THEIR 0
- DISPOSITIONS SYS ENGRG PAPER W/THEIR
 CONCURRENCE
 REVIEWS PAPER FOR ENGRG ACTIONS & PROVIDES
 VERBAL CLARIFICATION OF PAPER PROBLEMS WHEN
 RORD AT PCC
 COORD CONSTRAINT LIST & REAL TIME SHOP & KICS
 SCHEDULE CHANGES
 SUPPORTS ONE LIASON ENGR AT OFRC
 LOGS & FILES WORK AUTHORIZATION DOCUMENTS FOR
 SYSTEMS ENGRG ACTION
 PERFORMS ROUTINE ENGRG EVALUATION OF GSE MOD
 PKGS & PREPARES APPROPRIATE WORK AUTHORIZATION
 DOCUMENTS TO INCORPORATE MODS

- ٥

- RATE OF FLOW PROCESSING, LAUNCH & LANDING OPERATIONS QUANTITY OF DOCUMENTATION REQUIRING ENGRG DISPOSITION AMOUNT OF PROBLEMS ACROSS GEOGRAPHICAL AREAS ON ALL SHIFTS REQUIRING ENGRG RESOLUTION QUANTITY OF ASSESSMENTS & PREPARATION REQUIRED FOR GSF MOD PACKAGES GSE MOD PACKAGES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- PREV GROWTH ROMTS FOR LIAISON COVERAGE REDUCED DUE TO PROGRAM ROMT FOR INC ENGRG FLOOR SUPT CREATION OF NEW GSE MOD ASSESS & WAD PREP GROUP TO MINIMIZE GSE MOD WORK BACKLOG & INCREASE CAPABILITY OF GSE TO SUPPORT PROCESSING ACTIVITIES ADDITION OF REQUIRED LIAISON SUPPORT AT PAD

PROVIDE ROUTINE 7/3 SHIFT COVERAGE

DEPARTMENT: 17-04

NAME: DIR. GROUND SYSTEMS DESIGN ENGINEERING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR'S OFFICE

PROVIDE ENGINEERING MANAGEMENT OF LINE

ORGANIZATION

STAFF

WORK CONTROL

BUDGETS

PERSONNEL

SECURITY

TRAINING

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

NO STS 51-L IMPACT. TO PROVIDE SUPPORT FOR THE INCREASED MANPOWER IN DEPARTMENTS 17-BX AND 17-9X IN THE ABOVE AREAS. IN ADDITION, MODIFICATION COST ANALYSES AND DELTA: GENERAL SUPPORT TO THE DIRECTOR'S OFFICE IS PROVIDED. ACTIVE WORK CONTROL JOBS HAVE INCREASED FROM 1000 TO 1680 AS OF WEEK ENDING 5/22/87. IMPACTS: FY 1990 ASSUMPTION IS THAT WORKLOAD WILL NOT DECREASE, BASED ON LARGE BACKLOG OF ENGINEERING SUPPORT REQUESTS (ESRs) BEING GENERATED EACH MONTH.

DELTA: +4

TABLE 7-11 .- CONTINUED

DEPARTMENT: 17-80

NAME: DIR, PROJECT INTEGRATION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROJECT ENGINEERING MANAGEMENT

PROJECT ENGINEERING LINE MANAGEMENT

ENGINEERING DOCUMENTATION

REVIEW/UPDATE OPERATION & MAINTENANCE DOCUMENTATION (OMD) AS A RESULT OF ENGRG CHANGES

EMPLOYEE SERVICES

PIRNS, IRNS, SIDS

ENGINEERING DOCUMENTATION REVIEW & RELEASE

FACILITY/SYSTEMS CONFIGURATION CONTROL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

THERE ARE CURRENTLY 1400 ESRs IN THE SYSTEM WITH AN INCOMING AVERAGE RATE OF 140-150 ESRs PER MONTH. AVERAGE CLOSING RATE IS AT 100-110 PER MO. DOCUMENTATION UPDATES ON 152 CRITICAL SYSTEMS & 350 NON-CRITICAL SYSTEMS ARE PERFORMED BY THIS ORGANIZATION. A MINIMUM ESTIMATED REVIEW & UPDATE OF DOCUMENTATION REQUIRED IN 1990 IS 22,450 MH. RESPONSIBLE FOR CONDUCTING INTEGRATED REQUIRE HAZARD ANLYSES OF ENGRG SUPPORT REQUESTS. ESR IMPLEMENTATION THROUGH DESIGN RELEASE AUTHORIZATIONS REQUIRE HAZARD ANALYSES, SYSTEMS INTERFACE DOCUMENTS, INTERFACE CONTROL DOCUMENTS AS ACCOMPANYING DOCUMENTATION (OFTEN NOT COMPLETED IN THE PAST) & 15 NON MANDATORY. POST 51-L REVIEWS DICTATED REQUIREMENT TO TREAT ON 152 CRITICAL SYSTEMS AND 350 NON-CRITICAL SYSTEMS. MINIMUM ESTIMATED REVIEW & UPDATE OF 1990 DOCUMENTATION IS 22,450 MANHOURS.

IMPACTS: STAFF OF 12 (PRE 51-L, LSOC WAS 0; NOW 12) AVAILABLE TO DO OMD ENGRG DOCUMENTATION: THIS WORK WAS PREVIOUSLY (INADEQUATELY) DONE BY PRC. CLOSED LOOP OMD/OMRSD (+3) IS NEW REQUIREMENT. INTEGRATION ANALYSES OF FACILITY SYSTEMS & EQUIPMENT ESRS (WAS 4, 1s 9) ALSO DONE BY PRC BEEN AUGMENTED DUE TO MANDATORY NATURE OF REQUIREMENT.

DEPARTMENT: 17-81

NAME: GSE PROJECTS MANAGEMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROJECT ENGINEERING MGMT

PROJECT SCHEDULES
PROJECT MGMT CONTROL
COST ESTIMATES/BUDGET COST TRACKING PROJECT ANALYSIS & TRACKING CONTINUING GSE/FACILITY/SYSTEMS MODS & NEW ROMTS RESULTING FROM PROGRAM & FLIGHT ELEMENT CHANGED ROMTS

STS PROGRAM ANOMALIES RELATIVE TO FACILITIES & GSE DEMANDING SPECIAL TASK ASSIGNMENT

TRANSPORTATION & HANDLING PRESSURE VESSEL ACTIVITY SAFETY ISSUES MISHAP INVESTIGATIONS SYSTEMS PERFORMANCE ANALYSIS

SPECIAL PROJECTS

PROJECT SCHEDULES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

PROJECT ENGRG (PE) IS PERFORMED ON 100 TO 110 ESRs PER MONTH. THERE ARE 1400 ESRs CURRENTLY IN THE SYSTEM WITH AN AVERAGE NUMBER OF 30 JOBS BEING ASSIGNED TO EACH PROJECT ENGINEER AT ANY ONE TIME. AN AVERAGE OF 100 HOURS PER JOB IS EXPENDED. EACH PE HAS 1 1/2 YEARS OF WORK ASSIGNED AT THIS TIME WITH AN INCREASING BACKLOG. IN ADDITION, THERE ARE 292 OPEN PROBLEM REPORTS (PRS) IN THE SYSTEM WITH AN AVERAGE OF 30 INCOMING PER WEEK AND AN AVERAGE CLOSING RATE OF 25.

6, IS 3). PRESSURE VESSEL CERT/RECERT IS A NEW REQUIREMENT (+4). FACILITY SYSTEMS AND EQUIPMENT PROJECTS (WAS 17, IS 39) DRIVEN BY SUPPORT REQUIRED (TO 17-80, -90, -91, -92) FOR RESPONDING TO ESR TRAFFIC AND OPEN PROBLEM REPORTS. IMPACTS: VLS SHUTDOWN HAS DECREASED PROJECT ENGINEERING REQUIREMENT FOR COMMON/MOD COMMON EQUIPMENT (WAS

DELTA: +20

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-82

NAME: FACILITY PROJECTS MANAGEMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ACTIVATION & TURNOVER
PROVIDE ON-SITE DAILY INSPECTION/OBSERVATION
OF MODS OR CONSTRUCTION OF IN-LINE LAUNCH
FACILITIES & SUPPORT FACILITIES TO RESPOND
TO CONTINUING STS PROGRAM CHANGES

COST ESTIMATING/COST ENGINEERING

FACILITY PROJECTS
DEVELOP SCHEDULES
TEAM LEADERSHIP
MONITOR PROGRESS/SCHEDULE
MONITOR COSTS

FIELD ENGINEERING
DESIGN ENGRG SERVICE FOR TROUBLE SHOOTING
& PROBLEM RESOLUTION FOR DESIGN PACKAGE
IMPLEMENTATION

PROVIDE MGMT CONTROL ON VERIFICATION OF SYSTEMS & EQUIP TO ENSURE COMPLIANCE WITH ENGRG DESIGN/DRAWINGS

PROVIDE A SERVICE TO THE DESIGN ENGRG SUPPORT FOR COST ANALYSIS/ESTIMATES IN MODIFICATION PROJECTS & ANALYSIS ON EXISTING DESIGNS TO ENSURE MINIMUM MAINTENANCE COST ROMTS

PROVIDE DAILY MGMT CONTROL ON FACILITY
PROJECTS TO ENSURE COMPLIANCE WITH ENGRG
SPECIFICATIONS FOR IN-LINE LAUNCH FACILITIES
AS WELL AS SUPPORT FACILITIES

PROVIDE ON-SITE COORDINATION AND LIAISON BETWEEN IMPLEMENTING ORGANIZATIONS. FOLLOW CHANGE IMPLEMENTATION PROGRESS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

FACILITY PROJECTS IN THE AMOUNT OF 16M AND 12M ARE SCHEDULED TO BE ACCOMPLISHED IN FY-89 AND FY-90 RESPECTIVELY. APPROXIMATELY .2% (.002) OF THIS COST IS FACILITY PROJECTS MANPOWER (OR 64,000 MANHOURS EFFORT) EQUALING 17 MEN PER YEAR. IN ADDITION, COST ESTIMATING AT THE RATE OF 100 FACILITY TYPE ESRS PER YEAR MILL BE ACCOMPLISHED WITH AN AVERAGE OF 95 HOURS PER JOB. ACTIVATION/TURNOVER DOCUMENTATION IS REQUIRED ON ALL FACILITY PROJECTS.

IMPACTS: INCREASES ATTRIBUTED TO TRANSITION TO LSOC OF PRC WORK. (ACTIVATION & TURNOVER: WAS 8, IS 15; COST EST'G/ENG'R: WAS 1, IS 5: FACILITY PROJECTS: WAS 5, IS 17; FIELD ENG'R: WAS 2, IS 10. (NOTE: NO CHANGE ORDER--NEW FACILITIES OR SUBSTANTIAL MODS--IS INCLUDED IN REVISED ESTIMATES.)

DEPARTMENT: 17-91

NAME: SYSTEMS DESIGN & ANALYSIS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FACILITY SYSTEMS & EQUIPMENT DESIGN/ANALYSIS

PROVIDE DESIGN FOCAL POINT FOR ENGRG
REVIEW ALL COMPLETED DESIGN(S)
ANALYZE REQUIREMENTS TO ENSURE COMPLIANCE
ASSURE SYSTEMS DESIGN PERFORMANCE THRU
END_TO_END ANALYSIS
LAUNCH READINESS ASSESSMENTS
ASSURE SYSTEMS/EQUIPMENT CONFIG CONTROL

CONTINUING GSE/FACILITY/SYSTEMS MODIFICATIONS & NEW REQUIREMENTS RESULTING FROM PROGRAM & FLIGHT ELEMENT CHANGED REQUIREMENTS. INCLUDES BUT IS NOT LIMITED TO:

SENSOR DEVELOPMENT SPECIAL STUDIES SAFETY PROJECTS OPERATIONS SUPPORT
ACTIVATION/TURNOVER OF FACILITIES
& SYSTEMS
COMMON/MOD COMMON EQUIPMENT SYSTEMS DESIGN ANALYSIS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

MANPOWER DRIVER: THIS SYSTEMS GROUP FORMED 1/87 TO RECEIVE ALL DESIGN ENG'R TASKS AND DO SYSTEMS ENGINEERING & INTEGRATION. DETAILED DESIGN WORK DONE IN 17-92 & 17-93. 17-91 CONFIRMS WORK ACCURACY PRIOR TO TRANSMITTING PACKAGE TO 17-80.'

NASA CCB APPROVED ENGINEERING SUPPORT REQUESTS BACKLOG OF 1400; LSOC ESR BACKLOG (i.e., APPROVED BY LSOC BOARD) IS 1000. AVERAGE 100 HRS DESIGN TIME (17-90, -91, -92) PER ESR. 2-YR HISTORICAL AVERAGE: 140-150 NEW ESR'S GENERATED PER MONTH. AVERAGE CLOSING RATE IS 100-110/MO. FIELD ESR'S GENERATED AS RESULT OF PROBLEM REPORT HAVE HIGH PRIORITY, APPROXIMATELY 1000 OF THESE NOW IN THE SYSTEM. SPECIFIC RORNNTS INCLUDE: SENSOR DEVELOPMENT+, SPECIAL STUDIES+ (e.g., PAD HERGENCY EGRESS ALTERNATIVES), SHOP AIDS DOCUMENTATION/CONVERSION (TO GSE)*, OMD/OMRSD CLOSED LOOP*, SAFETY PROJECTS+, OPERATIONS SUPPORT+, ACTIVATION/TURNOVER OF FACILITIES & SYSTEMS+. (* * NEW; + = AUGMENTED)

IMPACTS: INCREASE INCLUDES TRANSFER TO LSOC OF WORK PREVIOUSLY DONE BY PRC. WORK BACKLOG DRIVEN, COUPLED WITH NEW ROMNTS. SYSTEM DESIGN ANALYSIS EFFORT (+13). INCREASED MANPOWER LEVEL NOT CONSISTENT WITH TIMELY WORKING OFF OF BACKLOG.

DELTA: +26

TABLE 7-11.- CONTINUED

DEPARTMENT: 17-92

NAME: MECHANICAL/FLUIDS DESIGN

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE MECHANICAL/FLUIDS DESIGN
ENGINEERING TO SUPPORT ALL STS GROUND
FACILITIES, SYSTEMS & EQUIPMENT
MODIFICATION ANALYSIS

ANOMALY ANALYSIS
MODIFICATION CONCEPT & DESIGN
MOD DRAWINGS

NOTE: THESE FUNCTIONS ARE PERFORMED ON APPROXIMATELY 75 SYSTEMS AND ALL MAJOR FACILITIES, INCLUDING THE FOLLOWING MAJOR ENGINEERING

GASES PROPELLANTS

DISCIPLINES:

MECHANICAL STRUCTURAL/CIVIL PNEUMATICS

DESIGN NEW SYSTEMS

CONTINUING GSE/FACILITY/SYSTEMS MODIFICATIONS MODIFICATIONS & NEW REQUIREMENTS RESULTING FROM PROGRAM & FLIGHT ELEMENT CHANGE REQUIREMENTS.

- SENSOR DEVELOPMENT

SPECIAL STUDIES

SAFETY PROJECTS

PRESSURE VESSEL RECERT

OPERATIONS SUPPORT ACTIVIATION/TURNOVER OF FACILITIES/ SYSTEMS

FACILITY PROJECTS

- CLS MODIFICATIONS

- SYSTEM DESIGN ANALYSIS

- SHOP AIDS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DRIVER: SEE 17-91 FOR BACKLOG. SPECIFIC REQUIREMENTS INCLUDE: SENSOR DEVELOPMENT+, SPECIAL STUDIES+, SAFETY PROJECTS+, PRESSURE VESSEL RECERTIFICATION*, DOCUMENTATION OF SHOP AIDS*, CLS MODIFICATIONS*, OPERATIONS SUPPORT+.

IMPACIS: INCREASE INCLUDES TRANSFER TO LSDC OF WORK PREVIOUSLY DONE BY PRC. WORK BACKLOG DRIVEN, COUPLED WITH NEW REQUIREMENTS. INCREASED MANPOWER LEVEL NOT CONSISTENT WITH TIMELY WORKING-OFF OF BACKLOG.

DELTA: +60

7-59

TABLE 7-11.- CONCLUDED

DEPARTMENT: 17-93

NAME: ELECTRICAL/ELECTRONIC DESIGN

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE ELECTRICAL/ELECTRONIC DESIGN ENGINEERING TO SUPPORT ALL STS GROUND FACILITIES AND EQUIPMENT

- MODIFICATION ANALYSIS
- ANOMALY ANALYSIS
- MODIFICATION CONCEPT & DESIGN
- MODIFICATION DRAWINGS

NOTE: THESE FUNCTINS ARE PERFORMED ON APPROX 75 SYSTEMS AND ALL MAJOR FACILITIES. DISCIPLINES INCLUDE:

ELECTRICAL POWER ELECTRICAL CONTROLS ELECTRICAL SYSTEMS

CONTINUING GSE/FACILITY/SYSTEMS MODIFICATIONS
AND NEW REQUIREMENTS RESULTING FROM PROGRAM
AND FLIGHT ELEMENT CHANGED REQUDIREMENTS

INCLUDES BUT IS NOT LIMITED TO:

- SENSOR DEVELOPMENT

- SPECIAL STUDIES

- SAFETY PROJECTS

- OPERATIONS SUPPORT

- FACILITY PROJECTS

- CLS/MODIFICATIONS

- SYSTEM DESIGN ANALYSIS

- SHOP AIDS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DRIVER: SEE 17-91 FOR BACKLOG. SAME SPECIFIC REQUIREMENTS AS 17-92, EXCEPT FOR PRESSURE VESSEL RECERT.

IMPACTS: INCREASE TRANSFER TO LSOC OF WORK PREVIOUSLY DONE BY PRC. WORK BACKLOG DRIVEN, COUPLED WITH NEW REQUIREMENTS (+15). INCREASED MANPOWER LEVEL NOT CONSISTENT WITH TIMELY WORKING OFF OF BACKLOG.

7.7 2X-XX KSC OPERATIONS

As indicated previously in this report, the number of equivalent manyears for the hands-on processing workforce projected for FY 1990 will decrease from the level experienced in the six months prior to STS 51-L. high levels of overtime worked will be reduced by increasing the number of technicians and supervisors by 110, but assuming a 1% overtime factor results in an overall decrease equivalent to 76 manyears - from 1243 to 1167. LSOC management personnel justified this change on the basis of having a more efficient operational capability due to increases in supporting areas (engineering, quality control (QC), facilities and equipment O&M). The OPF managers, however, point out that the 1% overtime assumption is not credible since it was based largely on the implementation of the full "rolling wave" (7 crews) approach. The change to a 3-crew approach, a modified work week, the use of personnel from non-critical path facilities to supplement the critical path workforce, and the use of overtime to enable weekend coverage and occasional power-on third shifts was considered an appropriate means of avoiding the otherwise inefficient use of the workforce which results from the original assumption. Coupled with factors which indicate an increased workload in given areas, such as tile processing timelines having more than doubled due to new OMI constraints. the 1% overtime assumption is regarded by the team as needing revision.

In terms of relative manpower levels to processing facilities, revising the projected equivalent manpower level for the critical path facility, the OPF, is not a major cost driver. The OPF operations, OPF GSE, and TPS operations departments accounted for about 562 equivalents prior to STS 51-L. Augmenting the overtime level to 5% would result in an increase of only approximately 20 manyears.

The KSC Operations organization is shown in Figure 7-7. Table 7-12 is an operations manpower bottoms-up analysis, and a breakdown by department is shown in Table 7-13.

Figure 7-7.- KSC Operations organizational chart.

Figure 7-7.- Concluded.

TABLE 7-12.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS KSC OPERATIONS

	PRE-51L		FY1990		DELTA		
NO. ORGANIZATION:	OVERTIME RATE	RVE HEADCOUNT	AVE EP	AVE HEROCOUNT	AVE EP	RVE HEADCOUNT	AME EP
							•
2X-XX KSC OPS DIRECTORATE	1.10	1050	1243	1156	1167	106	-75 -25
20-01 KSC OPS DIRECTOR		12	12	8	8	-4	-4
23-XX OPF OPERATIONS	1.17	606	709	582	588	-24	-121
23-01 OPF DIRECTOR 23-10 OPF HB-1 DIVISION 23-20 OPF HB-2 DIVISION 23-3X 6SE INOUST. SHOPS/LAB DIV 23-4X TPS DIVISION		8 117 124 210 147	9 137 145 246 172	102 211	66 103 103 213	-22 1	56 -34 -42 -33 -69
23-3X GSE SHOPS /LABS DIVISION	1.17	210	246	211	213	1	-33
23-30 GSE INDUST. SHPS/LAB 23-31 OPF GSE DEPT 23-32 VAB SHOPS/LABS DEPT 23-33 HMF OPERATIONS DEPT	· · · · · · · · · · · · · · · · · · ·	57 64 61 28	67 75 71 33	4 133 44 30	4 134 44 30	-53 69 -17 2	-63 59 -27 -2
23-4X TPS OPERATIONS	1.17	147	172	102	103	-45	-69
23-40 TPS OPERATIONS DIVISION 23-41 TPS HB-1 DEPT 23-42 TPS HB-2 DEPT		12 67 68	14 78 80	4 49 49	4 49 49	-18	-10 -29 -30
26-XX PAD OPS DIRECTOR	1.21	406	491	462	467	56	-25
26-01 PAD OPS DIRECTOR 26-10 PAD A OPERATIONS 26-20 PAD A OPERATIONS 26-30 HLP/FLT SYSTEMS		10 228 103 65	12 276 125 79	136 136	10 137 137 182	-92 33	-2 -139 13 103
27-XX OFFSITE & LANDING/RECOV	1.17	26	30	104	. 105	78	75
27-01 OFFSITE LANDING/RECOV DIR 27-10 OFFSITE LANDING/RECOVERY 27-2X OFFSITE PLANNING/INTGRTN		1 25 0	1 29 0	4 37 63	4 37 64	3 12 63	3 8 64
27-2X OFFSITE PLANNING/INTEGRTN	1.00	0	0	63	64	63	64
27-21 DERF OPERATIONS DEPT 27-22 KSC MOVE OPS DEPT 27-23 OPS PLANS/PROCEDURES DEPT		0	0 0	25	10 25 29	25	10 25 29

TABLE 7-13.- KSC OPERATIONS BREAKDOWN BY DEPARTMENT

DEPARTMENT: 20-01

NAME: DIR, KSC OPERATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR/MGMT OF PROCESSING FROM LANDING TO LAUNCH

DIRECT OPERATION OF FACILITIES AND PERSONNEL REQUIRED TO PROCESS SHUTTLE FROM LANDING

TO LAUNC

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O TRANSFER OF PERSONNEL

DELTA: -4

TABLE 7-13.- CONTINUED

DEPARTMENT: 23-01

NAME: DIR, OPF OPERATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR/MGMT OF OPF DIRECTORATE

DIRECTION AND CONTROL OF ALL ORBITER

STAND-ALONE OPERATIONS

ADMINISTRATIVE, SECURITY, FINANCE AND SUPPORT FOR OPF DIRECTORATE

MANAGEMENT OF OPF OPERATIONS

DIRECTION & CONTROL OF ALL TASKS REQUIRED

TO PROCESS ORBITER

ORBITER ACCESS CONTROL/AREA SECURITY

MONITORS INGRESS & EGRESS SECURITY CONTROL

OF ORBITERS IN HIGH BAY

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O INCREASED OMI'S
- O INCREASED FREQUENCY OF OMRSD/MAINT DOCUMENTATION AND MAINTENANCE
- O MORE INVOLVED TRAINING AND CERTIFICATION REQUIREMENTS REDUCED CERT SPANS.
- O INCREASED SIGNATURES AND PROCESSING TIME FOR PRACA ITEMS/WADS

DEPARTMENT: 23-10/20

NAME: MGR, ORBITER PROC HB1/HB2

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ORBITER FWD PROCESSION PER HIGH BAYS

POWER UP, DOWN, CREW HATCH PREPS, CREW QUARTERS PREP, MODS, PRS

(INCLUDE MID. AFT STATEMENTS)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O INCREASED PR. TOS, DEVIATION AND PRACA SYSTEM REACTION/SPANS.
- O OVERCONTROL OF FLOOR PAPER (SATELLITE TAIRS WITHDRAWN)

DELTA: -37

___.

TABLE 7-13.- CONTINUED

DEPARTMENT: 23-30, 31

NAME: MGR, GSE INDUSTRIAL SHOPS & LABS

MGR, OPS GSE

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

OPF GSE/MAINTAIN, CERTIFY AND REPAIR GSE

PRs 256/MONTH

SUPPORT-ORBITER TESTING & MAINTENANCE

GSE WAS 200/MONTH

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O PRE 51L QUALITY CONTROL IN CLOSURE LOOP ONLY
- O POST 51L COMPLETE QC INVOLVEMENT IN GSE PAPER CYCLE
- O CIL & FMEA REVIEWS = ADDED MAINT, WAIVER PROCESSING AND VOLUMES OF PAPER PROCESSING

DEPARTMENT: 23-32

NAME: MGR, CARGO/FLT KITS/CREW SYS/

SHOP & LABS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

VAB SHOPS AND LABS/OPERATE & MAINTAIN FLT CREW EQUIPMENT

VAB SHOPS & LABS OPERATE 5 DAYS/ 2 SHIFTS WITH CONTINGENCY OVERTIME & ODD WORK WEEKS

OPERATE & MAINTAIN FLIGHT KITS/CARGO LABS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O FUNCTIONS TRANSFERRED TO DEPT 23-31 (-23)

O OVERTIME REDUCTION INCREASED (+6)

DELTA: -17

TABLE 7-13.- CONTINUED

DEPARTMENT: 23-33

NAME: MGR, HMF & INDUSTRIAL SHOPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

HMF OPERATIONS/OPERATE HYPERGOLIC MAINTENANCE FACILITY

HMF OPERATES 5 DAY/2 SHIFT OPERATION WITH SPOT ODD WORK WEEKS AND OVERTIME FOR CONTINGENCIES

PROCESS & REPAIR FRCS & OMS PODS FOR ALL ORBITERS

OPERATE AND MAINTAIN GSE AT HMF SITES

OPERATE ORDNANCE LAB

TEST, STORE, ISSUE NASA STANDARD INITIATORS & ALL PYRO BUILDUP

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O REDUCE OVERTIME FROM 17% TO .1% (3)
- O CONSOLIDATE ORDNANCE AND HMF OPERATIONS (-1)

DELTA: +2

--

TABLE 7-13. - CONTINUED .

DEPARTMENT: 23-41/42/40

NAME: MGR. TPS OPS HB1/HB2 MGR, TPS OPNS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

OPF THERMAL PROCESSING HIGH BAYS 1 & 2 TPS WAD WORK FLOW INDICATORS: MAINTENANCE OF ALL ORBITER TPS TILES REPLACED FIBS REPLACED REPAIR FLIGHT AND GROUND DAMAGE GAP FILLERS REPLACED 550 850 PERFORM OFFSITE TPS OPERATIONS DRs WORK 200 PCR DATA SHEETS 2900

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- ALL TPS TASKS ARE 100% OMI CONTROLLED, ANY CHANGES REQUIRED DEMANDS EO'S TO OMI-VERY LENGTHY PROCESS COULD RESULT IN WORK STOPPAGE.

 DEDICATED PERSONNEL TO CERTAIN TASKS HAS ELIMINATED CROSS TRAINING CAPABILITIES, REQUIRING ADDITIONAL PERSONNEL.
- QUALITY SURVEILLANCE HAS INCREASED FROM 20% to 90% ON ALL DOCUMENTS AND TASKS SLOWING DOWN PRODUCTIVITY.
- ENGINEERING HAS DEVELOPED NEW DATA SHEETS THAT REQUIRES ADDITIONAL TRAINING AND MUST CONTINUE TO MAKE CHANGES TO ELIMINATE CONFLICT OF INTERPRETATION.
 A TASK THAT REQUIRED 1.0 HOURS TO COMPLETE A YEAR AGO, REQUIRES 2.2 HOURS TODAY TO COMPLETE.
- OVER REACTION TO TPS BONDING PROBLEMS HAVE CREATED A COMPLEX PAPER SYSTEM NOT CONDUCIVE TO EFFICIENT PROCESSING, I.E. AVG. WAD = 400-500 PAGES.
- O CERTS/TRAINING HIGHLY COMPLEX = IMPRACTICAL.

DELTA: -45

TABLE 7-13.- CONTINUED

DEPARTMENT: 26-01

NAME: DIR, PAD OPERATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR/STAFF

DIRECTION/ADMINISTRATION OF ENTIRE PAD OPERATIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

DEPARTMENT: 26-10/20

NAME: MGR, PAD A/B OPS

FUNCTION/TASK

ELECTRIC/DC POWER/HAZARDOUS GAS

DETECTION SYSTEM

ENVIRONMENTAL CONTROL SYSTEM/PROVIDES AIR TO ORBITER, PCR WHITE ROOM, ETC.

HYPERGOLIC SYSTEMS/MAINTAINS GSE, PIPING, VALVES

POWER REACTANT STORAGE, FUEL CELLS/O&M OF FUEL CELLS CRYOGENIC DEWARS/DISTRIBUTION SYSTEM

SWING ARMS/HYDRAULICS FOR SWING ARMS

LH2 SYSTEM, MAIN PROPULSION SYSTEM LO2 SYSTEM PCR & PGHM

MANPOWER DRIVER (SKILLS)

MAINTENANCE, CHECKOUT, CALIBRATION, SUPPORT 24 HRS, 7 DAYS, 3 SHIFTS

OMI SOOO9, LAUNCH PAD VALIDATION 93 TECHS
OMI SOO25, HYPERGOL PROPELLANT - 80 TECHS

AVG NUMBER PR'S TPS'S PER MONTH = 120 PER PAD

AVG NUMBER OF PMOMI'S 80 PER MONTH PER PAD

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O TRANSFER OF FLIGHT ELEMENT PERSONNEL, ORBITER FORWARD, ORBITER AFT, ET AND SRB TO DEPT 26-30, "STATIONIZATION" REASSIGNMENTS
- O INCREASED FREQUENCY AND OMRSD/MAINTENANCE DOCUMENTATION AND MAINTENANCE

DELTA: -59

TABLE 7-13.- CONTINUED

DEPARTMENT: 26-30

NAME: MGR, MLP

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

TAIL SERVICE MAST'S / O&M OF TSM

DC POWER/ORM OF POWER SUPPLIES

GROUND HYDRAULICS

HAZARDOUS GAS DETECTION

ORDNANCE

ECS

ORBITER FORWARD PERSONNEL

ORBITER AFT PERSONNEL

ET PERSONNEL
SRB PERSONNEL

9 PMOMI'S/MO.

20 PR'S, DR'S, TP'S PER MONTH PER MLP

11 PNOMI'S PER MONTH

15 PR'S, DR'S, TPS'S PER MONTH

5 PMOMI PER MONTH

11 PR, DR, TPS PER MON1H

13 PMOMI PER MONTH, 13 PR, DR, TPS PER MONTH

3 PMOMI/MO, 5 PR, DR, TPS/MO.

9 PMOMI/MO, 11 PR, DR, TPS/MO.

42 PR, DR, TPS PERFORMED PER LAUNCH CYCLE

112 PR, DR, TPS PER WORK FLOW

18 PR, DR, TPS PER FLOW

23 PR, DR, TPS PER FLOW

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O TRANSFER OF PERSONNEL, ORBITER FORWARD, ORBITER, AFT, ET AND SRB FROM DEPT 26-10/20, STATIONIZATION REASSIGNMENTS
- O INCREASED FREQUENCY AND OMRSD/MAINTENANCE DOCUMENTATION AND MAINTENANCE

TABLE 7-13.- CONCLUDED

DEPARTMENT: 27-01,10,11,12,13,20,21,22,23

NAME: OFFSITE 7 CONTINGENCY LANDINGS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

KSC - DEVELOP & MAINTAIN ALL DOCUMENTATION FOR OFFSITE LANDING SITES

REQUIRES NORMAL 5 DAY/1 SHIFT WORK WEEK AND 7 DAY 3 SHIFT CONTINUOUS DURING LANDING AND RECOVERY OPERATIONS

DRYDEN FLIGHT RESEARCH FACILITY WHITE SANDS SPACE HARBOR TRANS-OCEANIC ABORT LANDING SITES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O INCREASED REQUIREMENTS/SAFETY/PLANNING/CERTIFICATIONS IN THIS AREA HAVE CREATED A SEPARATE DIRECTORATE/ORGANIZATION TO HANDLE THE CHANGED PROGRAM. 104 DEDICATED/TRAINED PERSONNEL ARE NOW REQUIRED TO SUPPORT THE LAUNCH/RECOVERY/OFFSITE OPERATIONS SEE 27XX C&RS ORGANIZATION CHARTS

1.e. PREVIOUSLY OFFSITE AND RECOVERY WAS PART OF OPF OPS AND EACH LAUNCH/RECOVERY CYCLE INTERRUPTED THE OPF HB-FLOW

INCREASED TRAINING AND CERTS REQUIRE SPECIALIZED & LONG-TERM TRAINING PROGRAMS FOR CONVOY TAL & TURNAROUND OPS.

7.8 24-XX MORTON THIOKOL

Morton Thiokol is responsible for the overall SRB/ET processing and integration with the Orbiter. ET operations include the initial receipt from the Michoud Assembly Facility and offload from the barge, checkout and complete assembly, mating to the SRB and final preparation for launch. SRB processing includes receipt from Morton Thiokol, Incorporated (MTI) WASATCH, offloading from railcar, checkout and preparation, stacking, and integration with the ET and the Orbiter. Post launch activities include SRB recovery, disassembly of the flown boosters, and their return to the manufacturers for refurbishment.

The manning levels to support this activity prior to STS 51-L averaged 452 equivalents. The projected levels for 1990 are estimated at 485 equivalents, an increase of 33. (Both numbers include 21 indirects). In September 1987, the headcount is anticipated to be 387, while growing to 420 in September 1988. Comparing the pre-STS 51-L and September 1989 levels, the major increases in manning occur in departments 24-10, Direction and Administration of Operations (+6), department 24-30, MTI Quality Assurance, Engineering and Inspection (+18) and department 24-50, SRB/ET Processing (+20).

MTI manpower is driven by the launch processing manifest and related KSC schedules. Operations are conducted on a 3-shift, 5-day basis. Prior to STS 51-L, peak overtime of 30% was experienced in most of the MTI departments. Four shift managers are being added to provide management better floor visibility, and 2 contract specialists are being added to reduce the high overtime rates. As a result of increased emphasis on quality assurance, engineering, and inspection, department 24-30 is adding manpower to handle increased work requirements and to reduce overtime constraints. SRB/ET processing increased requirements include the mechanical force/ultra sonic testing of each SRB segment, joint heater installation and checkout, and joint leaks testing and "J" seal inspection after stacking.

Although sufficient work volume indicators were provided by this department for the expected work requirements, no correlation could be made between the increase in manpower requested and pre-STS 51-L.

Figure 7-8, Morton Thiokol organizational chart is followed by Table 7-14, a bottoms-up analysis of Morton Thiokol operations and by Table 7-15, a Morton Thiokol breakdown by department.

Figure 7-8.- Morton Thiokol organizational chart.

į

TABLE 7-14.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS MORTON THIOKOL OPS

	PRE-51L			FY1990		DELTA ====	
NO. ORGANIZATION:		AVE HERDCOUNT		AVE HEROCOUNT		RVE HEROCOUNT	AVE EP
24-XX MORTON THIOKOL OPS	1.13	400	450	490	485	######################################	34
24-01 DIR, VAB OP5 - SRB				2	2	2	2
24-10 MANAGEMENT & STAFF	1.12	7	8	10	10	3	2
24-30 QUALITIY RSSURANCE	1.18	63	74	98	89	25	15
24-40 SAFETY	1.13	13	15	20	20	7	6
24-50 ET/SRB PROCESSING	1.12	203	226	224	226	21	0
24-60 SRB RETRL/DISRSSEMBLY	1.12	77	96	93	94	16	
24-80 PROCESS SUPPORT	1.12	37	41	43	43	6	2

TABLE 7-15.- MORTON THIOKOL BREAKDOWN BY DEPARTMENT

DEPARTMENT: 24-01,10

NAME: DIR, VAB OPS - SRB MGR, ADMIN SUPPORT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

· _____

·--·

DIRECTOR

ADMINISTRATION

VAB/RPSF OPERATIONS

DIRECTION/ADMINISTRATION

DIRECTION & ADMINISTRATION OF VAB OPERATIONS WHICH INCLUDES THE RPSF AND HANGAR AF RETRIEVAL AND DISASSEMBLY OPERATIONS

MANAGEMENT OF LOGISTICS OPERATIONS

MANAGE ALL MTI/SPC CONTRACT FUNCTIONS
INCLUDING BUDGET, FINANCIAL MANAGEMENT
& HUMAN RESOURCES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDED THREE (3) SHIFT MANAGERS - PROVIDE MTI UPPER MANAGEMENT VISIBILITY OF FLOOR OPERATIONS ADDED TWO (2) CONTRACT SPECIALISTS TO REDUCE HIGH OVERTIME RATE PRE 51-L (30%) TO (1%)

DELTA: +5

TABLE 7-15 .- CONTINUED

DEPARTMENT: 24-30

NAME: MORTON THIOKOL (QUALITY ASSURANCE)
(QUALITY ENGINEERING/QUALITY INSPECTION)

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE QUALITY INSPECTION FOR THE FOLLOWING FUNCTIONS:

ET PROCESSING
ET/SRB STACKING
BOOSTER BUILDUP
ACM - RPSF
ACM - VAB
AF HANGAR OPERATIONS
RECEIVING INSPECTION
MECHANICAL SHOP
SURVEILLANCE

PROVIDE QUALITY ENGINEERING FOR THE FOLLOWING FUNCTIONS:

BOOSTER BUILDUP SUPPORT RPSF VAB PROCESSING HB 1, 2, 3, 4 QUALITY LABORATORY OPERATIONS DISASSEMBLY OPERATIONS/HGR AF NOT/NDE AND MEASUREMENTS RECURRENCE CONTROL QUALITY PLANNING NEW NOT/NDE ACTIVITIES AND PRECISION MEASUREMENTS

INCREASED FLOOR COVERAGE REQUIREMENTS
INCREASED LABORATORY TESTING/EVALUATION
INCREASED RECURRENCE CONTROL ACTIVITIES
INCREASED QUALITY PLANNING ACTIVITIES
NEW SURVEILLANCE INSPECTION REQUIREMENTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

EP OVER PRE 51-L MANNING DUE TO INCREASED WORK SCOPE (ABOVE); (10)

OVERTIME REDUCTION AND 7/3 SHIFT REQUIREMENTS (15)

DEPARTMENT: 24-40

NAME: MTI SAFETY

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECT SUPPORT TO ALL PROCESSING FACILITIES (VAB. RPSF. HANGER AF. SRB RETRIEVAL ACTIVITIES)

SUPPORT OF MULTIPLE FACILITIES AND SIMULTANEOUS OPERATIONS IN SUPPORT OF STS PROCESSING

DEVELOP SAFETY REQUIREMENTS FOR PRETEST BRIEFINGS FOR HAZARDOUS OPERATIONS

SEVEN DAYS A WEEK; THREE SHIFTS PER WEEK

FACILITY SAFETY WALKDOWNS AND INSPECTIONS

REAL-TIME REVIEW OF WORK AUTHORIZATION DOCUMENTS.

INCREASED PROCESSING FACILITIES

ESTABLISH AND MAINTAIN SAFETY CLEARANCES ASSOCIATED WITH HAZARDOUS OPERATIONS

INCREASED HAZARDOUS OPERATIONS

SUPPORT OF MISHAP INVESTIGATIONS

EXTENDED FACILITY MODIFICATION ACTIVITIES

TOXIC VAPOR CHECKS AND OTHER TYPE 11 ENVIRONMENTAL CHECKS

EXPANDED SRB TEST ACTIVITIES

PERFORM OPERATIONAL HAZARD ANALYSIS IN SUPPORT OF SYSTEM SAFETY ENGINEERING ACTIVITIES

SUPPORT OF SRB RETRIEVAL ACTIVITIES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +7

TABLE 7-15 .- CONTINUED

DEPARTMENT: 24-50

NAME: MGR, SRB/ET PROCESSING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ET/SRB PROCESSING

VAB/RPSF OPERATIONS

OFFLOAD ET FROM BARGE AND PREFLIGHT CHECKOUT, OFFLOAD ET FROM BARGE, TRANSPORT TO VAB AND POSITION IN CHECKOUT CELL

OFFLOAD SRM SEGMENTS FROM RAILCARS AND PRESTACK ASSEMBLY

SRB STACKING, RECEIVE & INSPECT FORWARD ASSEMBLIES ON MLP, SECURE HOLDDOWN POSTS, PIN. LEAK CHECK ETC.

ET/SRB MATE AND CLOSEOUT/REMOVE ET FROM STORAGE CELL, MATE ET'S TO SRBs, PERFORM FINAL ASSEMBLY & CHECKOUT

LAUNCH VEHICLE PROCESSING MANIFEST AND RESULTING KSC SCHEDULES, ET PROCESSING INVOLVES 85 MAJOR OPERATIONS PER TANK ON 10 HIGH BAY LEVELS, 7 COMPONENTS HANDLED

RPSF PROCESSING INVOLVES 88 MAJOR OPERATIONS PER SRB CONDUCTED ON 8 LEVELS & IN 5 FACILITIES, 5000 COMPONENTS ARE HANDLED

53 MAJOR OPERATIONS IN STACKING, 3 CREWS PER SHIFT TO SUPPORT THREE PARALLEL OPERATIONS. 1600 COMPONENTS ARE HANDLED. 144 MAJOR OPERATIONS IN MATE. 6660 COMPONENTS

GSE MAINTENANCE DRIVER BY REPEATABLE MAINT., RECALL SYSTEM, MANIFEST, EXTENSIVE COORDINATION, 970 GSE ITEMS

61 MAJOR OPERATIONS, 500 COMPONENTS HANDLED

GSE MAINT/MAINTAIN ET AND SRB GSE

MLP HOLDDOWN POST REFURBISHMENT & PAD SUPPORT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDED 3RD SHIFT IN RPSF/VAB TO SUPPORT NEW ROMTS POST 51-L AND REDUCE HIGH PRE 51-L OVERTIME RATE (21%). (+23) THESE PERSONS WILL BE CROSS-UTILIZED BETWEEN THE RPSF AND THE VAB. (-7) NEW REQUIREMENTS INCLUDE: MECHANICAL FORCE/ULTRA SONIC TEST OF EACH SRB SEGMENT; JOINT HEATER INSTALLATION AND CHECKOUT; JOINT LEAK CHECK; "J" SEAL INSPECTION AFTER STACK. (+5) FRS ADD'L ROMTS ARE IDENTIFIED, THIS NUMBER MAY INCREASE.

DEPARTMENT: 24-60

NAME: MGR. RECOVERY DISASSEMBLY

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

RETRIEVAL & DISASSEMBLY OF THE SRB./
OPERATE THE RETRIEVAL VESSELS, PERFORM RETRIEVAL VESSEL MOUS & MAINTENANCE, GSE MODS & MAINTENANCE, DIVING EQUIPMENT, DISASSEMBLY SUPPORT, SRB DISASSEMBLY, FACILITIES GSE O & M AND EQUIPMENT MODIFICATION MODIFICATION

MANPOWER DICTATED BY STS LAUNCH SCHEDULE AND HANGAR AF AUTOMATED PREVENTIVE MAINTENANCE SYSTEM

EACH CREW SHIP MANNED 24 HRS/DAY

DIVE TEAM SIZE BASED ON 10 MINUTE BOTTOM

DISASSEMBLY INCLUDES BREAKDOWN OF SRB's INTO 2000 SUBASSEMBLIES/COMPONENTS AND SHIPMENT TO ELEMENT CONTRACTOR/VENDOR

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

MANPOWER INCREASE DUE TO HIGH PRE 51-L OVERTIME RATE (30%)

DELTA: +16

TABLE 7-15. - CONCLUDED

DEPARTMENT: 24-80

MGR. PROCESS SUPPORT NAME:

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

SRB/ET PROCESS SUPPORT/ENGINEERING SUPT

FOR GSE

SITE MANAGEMENT

ENHANCEMENT STUDIES/SPECIAL STUDIES & ANALYSIS & COMPUTER DATA STORAGE, INTERNAL AUDITS

MAINTAIN 968 ITEMS OF GSE ET & SRB

ISSUE ALL SRB & ET GSE PAPER, DISPOSITION MR's & DR's

MICR PREPARATION & FILE MAINTENANCE (OM, OMI, SPI, DWGS, SPECS, ETC)

COORDINATE NEEDS OF ALL VAB TENANTS

PARTICIPATE IN IERB

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O INCREASED WORKLOAD DESCRIBED ABOVE (2)
- O OVERTIME REDUCTION (12%) TO (1%) (4)

DELTA: 6

7.9 3X-XX SUPPORT OPERATIONS

Support Operations, shown in Figure 7-9, provides the technical support to the facilities and the equipment required for processing operations, except for the LCC, and manages all communications systems for KSC, including new communications systems design (e.g., the Operational Intercommunications System-D (OIS-D) project). The communications system design function is new to SPC, having been transferred from PRC and the BOC/EG&G. The facilities support group includes the technicians manning the shops and labs, the crane/door/platform operators, and the O&M personnel for the structures and heavy equipment, electrical systems, pneumatics, water systems, etc.

Prior to STS 51-L, the Support Operations organization was experiencing high levels (15% composite) of overtime due to not having sufficient on-site personnel to support third shift and weekend processing operations. Technicians had to be called in when the GSE broke down and disrupted processing operations on these shifts. The shops and labs were working on 5/2 shifts during this period. The facilities 0&M department had an average staffing of 672, but the equivalent manpower level when overtime was factored in was 801. The plan For FY 1990 of 853 (headcount) addresses the need to eliminate the excessive overtime by staffing (odd work - week approach) for 7/3 operations, to improve corrosion control of pad structures, and to meet additional OMRSD requirements.

The increase in the communications department from pre-STS 51-L levels is significant, even when overtime is factored in. Before STS 51-L, the 317 personnel averaged 9 percent overtime - an equivalent level of 344. The growth to 396 personnel, assuming 1 percent overtime, was justified on several accounts: the need to provide voice, wideband TV, and cable 0&M on a 7/3 schedule, the addition of navigation aids support for the new contingency landing sites (+5), and the need for concurrent support to the new 0IS-D system (+26) and the existing 20-year-old equipment. Discussions with KSC personnel responsible for this area indicated that the 1 percent overtime guideline was responsible for increasing staffing levels from what was considered appropriate to a more reasonable (5 percent) guideline.

7.9.1 Grumman Technical Services

Grumman Technical Services, Inc. (GTSI) conducts the operations and maintenance of the launch processing systems. This includes the CCMS equipment sets, the record and playback system (RPS), and the central data subsystem (CDS). GTSI is also responsible for the instrumentation, calibration, and measurement of a multitude of systems. The manning levels prior to STS 51-L averaged about 729 equivalents; the projected levels for 1990 are estimated at 752 equivalents. The Shuttle Operations direct equivalents is 627, due to the DOD paying for the support to secure systems. In September 1987, the headcount level is anticipated to be 600, and it increases to 675 in September 1988.

Comparing the pre-STS 51-L and September 1989 manpower levels, the major increases in manning reside in LPS operations, instrumentation, calibration and engineering support. LPS operations manpower increases include support for additional SPDMS hardware, LTTS development, CCMS upgrades, and increased DOD and OMRSD processing requirements. The contractor previously underestimated the increased instrumentation workloads resulting from STS 51-L related changes. Increased requirements based on OMRSD and OMI reviews and the MLP-3 early reactivation requires 500 additional calibrations.

Table 7-16 is a bottoms-up analysis of support operations and Grumman/LPS. Table 7-17 is a Support Operations breakdown by department.

Figure 7-9.- Support Operations organizational chart.

Figure 7-9.- Concluded.

TABLE 7-16.

(A) SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS SUPPORT OPERATIONS

		PRE-51L		FY199		DELTA	
NO. ORGANIZATION:	OVERTIME RATE	RVE HEROCOUNT	AVE EP	AVE HEADCOUNT	AME EP	AVE HEADCOUNT	AVE EP
3X-XX SUPPORT OPERATIONS	1.15	1060	1220	1335	1348	275	129
30-01 DIRECTOR		11	11	11	11		0
33-XX FACILITIES O & M	1.19	672	801	853	962	181	60
33-01 Manager & Staff 33-10 Resources Administration 33-2X Field Operations 33-3X Planning & Control 33-4X Shops & Labs		7 14 426 91 134	7 15 510 109 160	12 17 541 108 175	12 17 546 109 177	5 3 115 17 41	5 2 36 0 17
33-2X Facility Field Ops	1.20	426	510	541	546	115	35
33-20 Manager & CCC Ops 33-21 System/6SE Maint 33-22 Structures/Heavy Equip 33-27 Cranes/Doors/Elev/Platfa 33-21 System/6SE Maint	1.20 1.20	15 143 173 95 143	19 172 209 114 171	30 203 200 109 203	30 205 202 109 205	15 60 27 13 60	12 33 -6 -5 34
33-21 Manager 33-23 Electrical 33-24 Prewatics 33-25 HVRC/ECS Group		6 63 29 45	7 75 35 54	7 97 38 61	7 98 38 62	1 34 9 16	0 23 4 8
33-22 Structures/Heavy Equip	1.20	173	207	200	202	27	-4
33-22 Manager 33-28 Mater Systems 33-29 Meavy Equipment 33-28 Structures		5 38 79 52	6 45 93 62	7 53 90 60	7 54 91 61	2 15 2 8	1 9 -12 -2
33-27 Cranes/Doors/Elev/Platfm	1.20	95	114	108	109	13	-5
33-3X Planning and Control	1.20	91	109	108	109	17	0
33-30 Manager 33-33 Work Control 33-34 Planning/Scheduling 33-35 Modification Mgmt		4 36 26 25	5 43 31 30	46	3 46 28 31	-1 10 2 6	-2 3 -3 1

(A) CONTINUED

;		PRE-51L		FY199	- :	DELTA	,
NO. ORGANIZATION:	OVERTIME RATE	AVE HEROCOUNT	AVE EP	AVE HERDCOUNT	AWE EP	AVE HEADCOUNT	AVE EP
33-4X Shops & Labs	1.20	134	160	175	177	41	16
33-40 Hanager		8	10	9	9	1	-1
33-41 Technical Shop≤		126	151	166	168 .	40	16
34-XX COMMUNICATIONS	1.09	317	344	368	372	51	27
34-01 Department		4	4	э	э ,	-1	-1
34-10 Voice		126 98	137 106	143 129	144 130	17 31	24
34-20 HB/TV & Nav Rids		54	59	55	56	! 1	-3
34-30 Cable 34-40 Comm Serv		35	36	36	36	3	ŏ
35-XX COMMUNICATIONS DESIGN	1.04	25	26	56	57	31	31
35-01 Director		0	0	2	2	2	2
35-11 Communications Design		0	0	. 19	19	19	19
35-12 DIS-D Project		<u>.</u>	~	14	14	14	14
35-13 Electronic Dev Lab		25	26	21 !	21	-4	-5
36-XX TEST SUPPORT HIGHT OFC	1.07	35	37	47	47	12	10

(B) SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS GRUMMAN/LPS

		PRE-51L		FY19		DELT	
NO. ORGANIZATION:	OVERTIME RATE	AVE HERDCOUNT	AVE EP	PROJ*D HEADCOUNT	AVE EP	AVE HERIDCOUNT	AVE EP
31-XX ORGANIZATIONAL TOTAL	1.04	702	729	745	752	 43	23
31-XX URSHITZHITUME 1017E	=======	*****	*******	######################################	=======	=======	23222
31-00 BUSINESS OPS	 	37 	<u> </u>	30	30	-7 	
31-1% TEST SPT SPECIAL PROJECTS		45	47	43	43	-2	-4
31-11 Test Support	·	32	33	33	33	1	0
31-12 Special Projects		13	14	10	10	: -3	-4
31-2X LPS O&M		313	326	334	337	21	12
31-21 RPS 06M		58	60	; 74	75	: 16	14
31-22 CDS Operations	}	110	114		116		2
31-23 CCMS D&M	•	145	151	145	146	: 0	-4

TABLE 7-16.- CONCLUDED

(B) CONTINUED

	PRE-51L		FY199	00 :=	DELTR	
NO. ORGANIZATION:	OVERTIME AVE RATE HEADCOUNT	AVE EP	PROJID HEADCOUNT	AVE EP	RVE HEROCOUNT	AVE EP
31-3X INSTRUMENTATION CAL	99	103	132	133	33	30
31-31 Instrumentation 31-32 Calibration	64 35	67 3 6		87 46	22 11	20 10
31-4X ENGINEERING SPT	208	216	206	208	-2	-8
31-40 Engr. Director 31-41 Logistics 31-42 Engr. Support 31-43 Conf. Mgt 31-44 RTE/Test Tools 31-45 Shops/Labs	3 47 40 48 15 55	3 49 42 50 16 57	45 44 39 19	4 45 44 39 19 56	; 4	1 -3 3 -11 4

TABLE 7-17.- SUPPORT OPERATIONS BREAKDOWN BY DEPARTMENT

DEPARTMENT: 30-01

NAME: DIR, KSC SUPPORT OPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR, SUPPORT OPERATIONS - KSC

MANAGEMENT/ADMINISTRATIVE

OVERALL MANAGEMENT OF THE OPERATION AND MAINTENANCE OF THE STS KSC PROCESSING FACILITIES, FACILITY SYSTEMS, GROUND SUPPORT SYSTEMS & EQUIPMENT, INCLUDING SUPPORTING SHOPS AND LABS

TECHNICAL STAFF

MANAGEMENT SUPPORT STAFF

TECHNICAL INTEGRATION SITE ACTIVATION

PERSONNEL BUDGET

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: 0

TABLE 7-17.- CONTINUED

DEPARTMENT: 33-01, 10

NAME: DIR, FACILITY O&M RESOURCES ADMIN

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR/STAFF

INCREASED MANAGEMENT VISABILITY OF DIRECTORATE ACTIVITIES & RESOURCE

RESOURCES ADMIN

ANALYSIS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

AN INCREASE IN UPPER MANAGEMENT VISABILITY IS REQUIRED ON ALL OFF SHIFTS (SHIFT 2/3) (5). AN INCREASE IS REQUIRED TO PROVIDE THE MANNING TO COVER THE ADDITIONAL MOVE ACTIVITY DUE TO THE BUILDUP (2) INCREASE OF AUDITS, PERSONNEL, AND ADMINISTRATIVE AND PLANNING TASK (1)

DELTA: 8

DEPARTMENT: 33-20

NAME: MGR, FACILITY FIELD OPS & CCC OPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FACILITY FIELD OPERATIONS

365 DATA/YR REMOTE MONITORING

CCC OPERATIONS GROUP

9,248 SYSTEMS DATA POINTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASE CONSOLE MANNING TO 7/3 TO PROVIDE BETTER MONITORING TO REDUCE PRE 51-L OVERTIME RUNNING (15)

DELTA: +15

TABLE 7-17.- CONTINUED

DEPARTMENT: 33-21,23,24,25

NAME: MGR, SYSTEMS/GSE MAINTENANCE

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

SYSTEMS/GSE EQUIPMENT

ELECTRICAL GROUP

143 UNIT SUBSTATIONS

31 UNIT 4132 KVA

7 AUTOMATED STORAGE RETRIEVAL SYSTEMS

PNEUMATIC GROUP

196 STORAGE VESSELS 36 COMPRESSORS 17 SYSTEMS

HVAC/ECS GROUP

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

PREVENTIVE MAINTENANCE, TECHNICAL DEVELOPMENTS, PREPARATION OF TECHNICAL ACTIVITIES STATUS REPORTS, LONG-RANGE PLANNING (2) ADDED FACILITIES AND SYSTEMS, PRESSURE VESSEL RECERTIFICATION, ADDITIONAL LANDING SITES, OVERTIME RUNNING 10 TO 51% WEEKLY, AND OVERTIME LIMITATIONS (58)

DELTA: +60

DEPARTMENT: 33-22. 28, 29, 2A

NAME: MGR. STRUCTURES & HEAVY EQUIPMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

WATER SYSTEMS GROUP SOUND SUPPRESSION FIREX SYSTEMS PADS A & B. OPF. OMRF. VAB. MOD. RPSF. HMF. 3 MLPs

3 MLPs. PADS A & B 22 PUMPS 14 MOTORS 8 DIESELS

HEAVY EQUIPMENT

342 PIECES 4 MOBILE CRANES 9 AERIAL PLATFORMS 5 ALRCRAFT TUGS 1 CONVOY VAN

STRUCTURES
ROTATING SERVICE STRUCTURE (RSS)
FIXED SERVICE STRUCTURE FLAME DEFLECTORS CRAWLERS

28 MOVABLE PLATFORMS 2 MOVABLE PLATFORMS
52 COMPARTMENT DOORS PER MLP 7 DIESEL ENGINES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

LONG-RANGE PLANNING, FOCS ADP SYSTEM ADMINISTRATION, ADDITIONAL AUDITS, AND ADDITIONAL PREVENTIVE MAINTENANCE COORDINATION (2)
ADDED SYSTEMS AND HEAVY EQUIPMENT SUPPORT, OVERTIME RUNNING 7 TO 71% WEEKLY, OVERTIME LIMITATIONS AND 7/3 COVERAGE (25)
INTERNAL REDISTRIBUTION OF STAFF PERSONNEL

DELTA: +27

TABLE 7-17.- CONTINUED

DEPARTMENT: 33-27

NAME: MGR, CRANES/DOORS/PLATFRMS/ELEVATORS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

CRANES/DOORS/PLATFORMS/ELEVATORS

115 DEVICES FROM 1 TO 250-TON CAPACITY

MATE/DEMATE DEVICES AT KSC AND DFRF

VAB & RPFS WORK PLATFORMS

462 PLATFORMS, 236 POWER OPERATED

OPF ORBITER FLOOR LIFTS

ELEVATORS

38 ELEVATORS FROM 3 FLOOR OFFICE ELEVATOR TO VAB & PAD

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDITIONAL FACILITY, MAINTENANCE AND REDUCTION OF OVERTIME (4.7% TO 50.4% WEEKLY) AND 7/3 COVERAGE (11)
ADDITIONAL ENGINEERING TO COVER CLOSED LOOP MAINTENANCE SYSTEEM AND 7/3 COVERAGE (2)

DEPARTMENT: 33-30, 33, 34, 35

NAME: MGR, FACILITY PLANNING & CONTROL MGR, WORK CONTROL MGR, PLANNING & SCHEDULING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FACILITY PLANNING & CONTROL

2-SHIFT/7-DAY SUPPORT REQUIRED

WORK CONTROL/DOCUMENT GENERATION, SCHEDULING

SHOP SCHEDULES AND SPECIAL REPORTS

AND STATUSING

SCHEDULING & PLANNING/PROVIDE UMD SUPPORT TO AND STATUSING

PREPARE AND MAINTAIN 500 OMIS AND 10MMs

OPERATE REAL TIME SUPPORT AND TROUBLE CALL

943 REAL TIME REQUESTS

SERVICE

717 TROUBLE CALLS/MO 188 OUTAGES/MO

MODIFICATION MANAGEMENT

90 MANDATORY RTFS MODS

CONTINUOUS PLANNING FOR CORROSION CONTROL

188 OUTAGES/MO

PREPARE LAUNCH EQUIPMENT SHOP (LES)

90 MANDATORY RTFS MODS

MODIFICATION MANAGEMENT PREPARE LAUNCH EQUIPMENT SHOP (LES) WORK **PACKAGES**

CONTINUOUS PLANNING FOR CORROSION CONTROL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

1ST AND 2ND SHIFT AND ODD WORK WEEK (OWW) COVERAGE. OVERTIME WAS AT 3 TO 26% PER WEEK VS NEW OVERTIME LIMITATIONS (10)
ADDITIONAL OMRSD REQUIREMENTS AND SHOP ENGINEERING WORK LOAD (7)

DELTA: +17

TABLE 7-17.- CONTINUED

DEPARTMENT: 33-40,41

NAME: MGR, FACILITY SHOPS & LAB MGR. TECHNICAL SHOPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FACILITY SHOPS & LABS PROVIDES OVERALL DIRECTION OF THE TECHNICAL SHOPS AND

MANAGEMENT DIRECTION

LABS TECHNICAL SHOPS

FABRICATION, MODIFICATION, REFURBISHMENT

MECHANICAL SHOPS/MECHANICAL FABRICATION. CORROSION CONTROL, MINOR MOVES AND PAINTING

REPAIR AND MAINTENANCE OF C/T'S, MLP'S, PADS, OPF, VAB AND OTHER LC-39 FACILITIES, SYSTEMS, AND EQUIPMENT

ELECTRICAL/ELECTRONIC - ELECTRICAL FABRICATION, CABLE POTTING AND MOLDING, PRINTED CIRCUIT BOARD FABRICATION

FABRICATION, MODIFICATION, INSTALLATION, REPAIR AND MAINTENANCE OF LC-39 ELECTRICAL SYSTEMS,

ASSEMBLY AND TESTING OF PRINTED CIRCUIT BOARDS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

SHOP BACKLOG TOO HIGH (12) GET TO 2-4 WEEK BACKLOG (MORE THAN 4 WEEKS IMPACTS USERS) 5X2 SHIFT SUPPORT NOT SUFFICIENT TO PROVIDE ADEQUATE SUPPORT TO USERS: 7/3 (31) PRE 51-L OVERTIME RUNNING 10 TO 50% PER WEEK CORROSION CONTROL SHOP NOT MANNED SUFFICIENTLY TO PROPERLY MAINTAIN PAD STRUCTURES (10)

DEPARTMENT: 34-01,10,20,30,40

NAME: DIR COMMUNICATIONS
MGR VOICE COMMUNICATIONS
MGR, WIDEBAND TRANS & NAVAIDS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR, COMMUNICATIONS

VOICE SYSTEMS/OPERATE AND MAINTAIN ALL OPERATIONAL VOICE SYSTEMS, SECURE COMMUNICATIONS, SUSTAINING ENGINEERING FOR ALL SYSTEMS

WIDEBAND TRANSMISSION/OLM OF COLOR TELEVISION SYSTEMS, OLM OF DATA TRANSMISSION DISTRIBUTION AND SWITCHING SYSTEMS, SUSTAINING ENGINEERING

NAV-AIDS/O&M OF CABLE SYSTEMS, O&M AND LANDING SITE

CABLE SYSTEMS/O&M OF CABLE SYSTEMS, O&M TELEPHONE EQUIPMENT & MAINFRAMES -PROVIDE SUSTAINING ENG

ADMINISTRATIVE

2676 OIS UNITS 4112 SPECIAL AUDIO EQUIPMENT UNITS 51 PAGING & AREA WARNING SYSTEMS 500 MOBILE, 800 PORTABLE, 40 FIXED STATIONS

DRYDEN SLA-OIS, RADIO, AUDIO, RECORDING, PAGING, AND WARNING

1.5 BILLION CONDUCTOR FT. 90 MAIN DISTRIBUTION FRAMES, 900 TELEPHONE CABINETS
40 MILES OF MULTI-STRAND FIBER OPTICS CABLE. 20 TERMINAL LOCATIONS, 400 MANHOLES AND 48

MILES OF DUCT BANK

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADMINISTRATIVE (-1)
WIDEBAND TRANSMISSION - INCREASE FOR 7/3 SHIFTS (3), INCREASED DATA SUPT (9),
INCREASED COLOR TV (3)
NAV-AIDS - ADD'L CLS SUPPORT (4)
CABLE SYSTEMS - INCREASE FOR 7/3 SHIFTS (3), ADD'L FIBER OPTICS (2)
COMMUNICATIONS - INCREASE FOR 7/3 SHIFTS (5), ADD'L SOFTWARE (2),
ADD'L PLANNING (2)
VOICE COMM - INCREASE FOR 7/3's (9), INCREASED VOICE EQUIPMENT (10)

DELTA: +51

TABLE 7-17.- CONTINUED

DEPARTMENT: 35-01,11,12,13

NAME: MGR, COMM DESIGN & DEVELOPMENT

DEVELOP/REVISE MULTI-YEAR COMMUNICATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MODERNIZATION PLAN

COMUNICATIONS DESIGN OF NEW COMMUNICATION ELEMENTS OR SYSTEMS/INCLUDING PHOTO OPTICS TIMING AND COUNTDOWN, VIDEO SYSTEMS, FIBER OPTICS AREA PAGE AND WWANING, SECURE COMMUNICATIONS, VOICE COMUNICATIONS

DESIGN SUPPORT TO DE FOR DEVELOOPMENT OF THE 015-0

DESIGN CONCEPTS DESIGN AND FOLLOW THROUGH OF END INSTRUMENTS DEVELOP TEST PROCEDURES, SOFTWARE REQUIREMENTS GENERATE 30,600 LINES OF CODE

PERFORM DESIGN STUDIES AND DEVELOP CANDIDATE

100 PC BOARD LAYOUT 600 DRAWING SHEETS

ELECTRONIC DEVELOPMENT LAB/PROVIDE FACILITY EXPERTISE FOR PROTYPING HARDWARE AS WELL AS FOR FABRICATING UNIQUE PRODUCTION HARDWARE

PROTOTYPE WORK IN-HOUSE 5,000 M/HRS, PRODUCTION 19,000 M/HRS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ORGANIZATION WAS NOT IN EXISTENCE PRIOR TO 51-L

- DE DIDN'T GIVE THEM GOOD STATEMENTS OF WORK ON WHAT WAS EXPECTED WHEN WORK WAS TRANSFERRED TO LSOC
- TRANSFERRED FUNCTIONS FROM 4 DE CONTRACTORS (PRC, BOEING, TWO OTHERS) 80-90

DEPARTMENT: 36-01

NAME: MGR, TEST SUPPORT MGT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

TEST SUPPORT MANAGEMENT/IMPLEMENTS THE LSOC SUPPORT OPERATIONS TEST DIRECTOR FUNCTION

PROVIDE MANAGERIAL LEADERSHIP

MANAGE TEST TEAM WHO SUPPORT ALL FLIGHT ELEMENT INTEGRATED TESTING THROUGH LAUNCH

MANPOWER FOR 2 FIRING ROOMS, 2 MEN PER CONSOLE 7 DAYS/3 SHIFTS 400 ORM DOCUMENTS

PROCESSING

DAILY MEETINGS COORDINATING/INTEGRATING RESOURCES

TEST SUPPORT OPERATIONS

MAIN DRIVER BEHIND "KICS" SCHEDULE

SUPPORT OPERATIONS DUTY OFFICERS

COORDINATE REALTIME RQUESTS & SCHEDULE CHANGES

SUPPORT OPERATIONS SITE MANAGEMENT

COORDINATION OF SUPPORT OPERATIONS

TEST SUPPORT PLANNING

DEVELOPMENT OF TECHNICAL DOCUMENTATION

SPECIAL REPORTS

ATTENDING NUMEROUS MEETINGS AND PREPARATION OF MANAGEMENT REPORTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O OVERTIME REDUCTION AND LIMITS ON HOURS & CONSECUTVE WORK DAYS (9)
- O INCREASED REPORTING REQUIREMENTS AND MANAGEMENT REVIEWS (3)

DELTA: +12

TABLE 7-17.- CONTINUED

DEPARTMENT: 31-01

NAME: SPC PROGRAM DIRECTOR

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECTOR

BUSINESS MANAGEMENT

31-00 BUSINESS OPERATIONS

PRE-51-L

37

30

PROJECTED 1990

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

7 PEOPLE TRANSFER TO THE MANAGEMENT ALLOCATION POOL FROM THE PRE-51-L HEADCOUNT FOR A TOTAL HEADCOUNT OF 30 IN 1990.

DELTA: -7

DEPARTMENT: 31-10,11,12

NAME: DIR, INTEGRATED GROUND OPS MGR, TEST SUPPORT MGR, SPECIAL PROJECTS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

TEST SUPPORT & SPECIAL PROJECTS

TEST SUPPORT COVERAGE IN JAN 1986 WAS

INADEQUATE

INTEGRATED OMI REVIEW WAS LIMITED

OPEN ITEMS REVIEW WILL INCREAS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: -2

TABLE 7-17.- CONTINUED

DEPARTMENT: 31-20,21,22,23

NAME: DIR LPS 08M

MGR, RPS/SRPS OPERATIONS MGR, CDS OPERATIONS

DEP. DIR, CCMS OPERATINS & MAINT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

_----

LPS OPERATIONS & MAINTENANCE OPERATES AND MAINTAINS ALL CCMS EQUIPMENT

50 CCMS CONSOLES 160 COMPUTER SYSTEMS

CITE TESTING SAIL TESTING

COMPLEX CONTROL CENTER

OPERATES & MAINTAINS THE RECORD AND PLAYBACK SUBSYSTEM (RPS)

5 COMPUTER SYSTEMS 42 ANALOG RECORDERS 40 STRIPCHART RECORDERS

40 DECOMMUTATORS SEVERAL HUNDRED TELEMETRY MODULES

OPERATES THE CENTRAL DATA SUBSYSTEM

14 LARGE SCALE COMPUTERS 1/O CENTER FOR 1400 USERS AND USER ASSISTANCE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

+16 RESULTING FROM RPS EXPANSION

+5 RESULTING FROM SPDMS EXPANSION

DEPARTMENT: 31-30,31,32

NAME: DIR, INSTRUMEN & CALIB

MGR, INSTRUMENTATION MEASUREMENTS

MGR, CALIBRATION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

O&M OF MEASUREMENT SYSTEMS AND LAUNCH

PADS, MLP AND LCC

300 CHANNEL SYSTEM EACH PAD 100 CHANNEL SYSTEM EACH MLP 100 METEORLOGICAL TRANSDUCERS

O&M LIGHTNING WARNING AND DETECTION

EQUIPMENT

29 FIELD MILL SITES, INDUCED VOLTAGE MEASUREMENT SYSTEM

INSTRUMENT CALIBRATION, REPAIR AND

1,100 FIELD CALS/MO.

CLEANING

11,600 BACKLOG

OPERATES WAVE ANALYSIS LAB

700/MO COMPUTER PROCESSED RECORDS 6/MO ANALOG MAGNETIC TAPES 6/MO DIGITAL MAG TAPES 4,000 FT PER MO. OSC RECORD 20/MO 8-INCH MAG. DISC

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: +33

TABLE 7-17.- CONTINUED

DEPARTMENT: 31-40

NAME: IGO ENGINEERING SUPPORT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

IGO ENGINEERING DIRECTOR AND STAFF RESPONSIBLE FOR DIRECTION OF FIVE (5) EPARTMENTS PROVIDING ON-LINE AND AUXILIARY SUPPORT TO LPS O&M

PROVIDE LOGISTICS, ATE, ENGINEERING SET SUPPORT, OMD AND INTERMEDIATE LEVEL MAINTENANCE SUPPORT TO EIGHT (B) CCMS STATIONS AND RPS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

(+1) STAFF ENGINEER TO PROVIDE PROJECT DIRECTION ON RETURN-TO-FLIGHT TASK, i.e., HARDWARE INVESTIGATIONS, MODIFICATIONS, MAINTENANCE PROCEDURES.

DEPARTMENT: 31-41

NAME: MGR, LOGISTICS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

LOGISTICS ENGINEERING SUPPORT FOR LPS HARDWARE: SPARES EVALUATION FOR NEW SYSTEMS: SUPPORT TO LPS HARDWARE MODS PROVIDES ON-GOING SUPPORT TO EXISTING SYSTEMS
NEW PRODUCT DEVELOPMENT AND MODIFICATIONS/
UPGRADE OF EXISTING HARDWARE IN THE LPS

SUPPORT THE INTERMEDIATE LEVEL MAINTENANCE FACILITY (ILMF) FOR REPAIR OF LPS LURS

10,000 LPS LRUS IN SYSTEM 400 LRUS REPAIRED/MO

MAINTAIN SUPPLY SUPPORT FACILITIES FOR ALL LPS HARDWARE

PROVIDES SUPPLY SUPPORT OF LPS LURS TO EIGHT (8) CCMS STATIONS AND RPS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ORGANIZATIONAL REALIGNMENT DELTA: -2

TABLE 7-17.- CONTINUED

DEPARTMENT: 31-42

NAME: MGR, SET SUPPORT ENGINEERING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE FIRST LEVEL OF SYSTEM ENGINEERING SUPPORT TO LPS HARDWARE, SOFTWARE AND OPERATIONAL ANDMALIES DURING SUPPORT OF SHUTTLE TEST AND LCD PROVIDE ON-SET SUPPORT TO MULTI-SHIFT OPERATIONS ON EIGHT (8) CCMS STATIONS

PROVIDE SECOND LEVEL HARDWARE ENGINEERING SUPPORT TO RESOLUTION OF LPS ANOMALIES

PROVIDE MULTI-SHIFT COVERAGE TO EIGHT (8) CCMS STATIONS. ENGINEERING SUPPORT IN JANUARY 1986 WAS INADEQUATE

PROVIDE ENGINEERING SUPPORT TO SUSTAINING ENGINEERING ON ALL SOFTWARE AND HARDWARE MODIFICATIONS/SURVIVABILITY PROJECTS ON LDG SYSTEMS PROVIDE SUPPORT TO ALL HARDWARE AND SOFTWARE
MODIFICATIONS TO INCLUDE RETURN-TO-FLIGHT
MODS AND SURVIVABILITY TASKS ON THE LPS
SYSTEMS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

HARDWARE ENGINEERING SUPPORT TO CCMS STATIONS IN JANUARY 1986 WAS INADEQUATE TO PROVIDE MANDATORY 3X7 TEST SUPPORT COVERAGE

DEPARTMENT: 31-43

NAME: MGR, DATA MANAGEMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE TECHNICAL SUPPORT TO NEW OR REVISED OMD/OMI DOCUMENTATION REQUIRED TO SUPPORT OPERATIONS AND MAINTENANCE OF THE LPS

MAINTAIN ALL EXISTING PROCEDURES AND IMPLEMENT NEW PROCEDURES TO SATISFY OMRSD AND RETURN TO FLIGHT REQUIREMENTS. (APPROXIMATELY 128 OMIS USED TO SUPPORT IGO O&M AND INST/CAL REQUIREMENTS)

PROVIDE OPERATIONS AND MAINTENANCE OF MAGNETIC TAPE PROCESSING AND STORAGE IN SUPPORT OF THE LPS

PROCESS, CERTIFY AND CONTROL APPROXIMATELY 33,000 MAGNETIC TAPES USED IN THE LPS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA MANPOWER RESULTS FROM REASSIGNMENT OF 1GO CONFIGURATION CONTROL PERSONNEL TO OPERATIONAL ORGANIZATIONS

DELTA: -9

TABLE 7-17.- CONTINUED

DEPARTMENT: 31-44

NAME: MGR, ATE/TEST TOOL DEVELOPMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

AUTOMATIC TEST EQUIPMENT SOFTWARE DEVELOPMENT FOR LPS LRU REPAIR

600 CANDIDATE LRU PROGRAMS IN QUEUE 140 CANDIDATE LRU PROGRAMS IN PROCESS 3-6 MONTHS/PROGRAM DEVELOPMENT PER LRU

DEVELOPMENT OF SPECIAL TEST TOOLS/SYSTEMS FOR OFF-LINE AND ON-LINE MAINTENANCE OF LPS HARDWARE

- O EIGHT (8) NEW TEST TOOLS IN DEVELOPMENT
- O FIVE (5) TEST TOOLS IN WORK
- O NEW TEST TOOL DEVELOPMENT IS ONGOING TO FACILITATE NEW HARDWARE AND NEW INNOVATIONS TO MAINTENANCE SUPPORT ON LPS HARDWARE

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

(+4) ENGINEERS ASSIGNED TO ENHANCEMENT AND DEVELOPMENT OF ON-LINE HARDWARE MONITOR SYSTEMS TO SUPPORT LPS OPERATIONS AND DEVELOP/IMPLEMENT NEW TEST TOOLS.

DELTA: +4

TABLE 7-17.- CONCLUDED

DEPARTMENT: 31-45

NAME: MGR, LABS & OEM

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

- TEST, VALIDATION AND REPAIR OF ALL LINE REPLACEABLE UNITS (LRUS) USED TO SUPPORT MAINTENANCE OF LPS HARDWARE
- MODIFICATION, TEST AND VALIDATION OF NEW AND INSTALLED LRUS IN SUPPORT OF LPS MAINTENANCE

TEST, VALIDATION AND REPAIR OF 'HOT SPARE' PERIPHERAL SUBSYSTEMS FOR THE LPS

- O PROCESS, REPAIR AND RETURN TO SERCICEABLE CONDITION APPROXIMATELY 400 LRUS PER MONTH
- O MODIFY TEST AND/OR VALIDATE APPROXIMATELY 60 NEW SPARE LRUS/MONTH
- O MODIFY TEST AND VALIDATE LRU SPARES PER ENGINEERING WAD
- O PROVIDE 'HOT' SPARES TO EIGHT (8) CCMS STATIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

NO IMPACT

DELTA: 0

7.10 40-XX LOGISTICS

The logistics organization, shown in Figure 7-10, is responsible for supporting the sparing requirements of ground and flight hardware systems, meeting SPC transportation needs, and conducting the technical training of the SPC and NASA employees. Even though 32 additional personnel had to be hired to perform the logistics management responsibility for all development center/contractor GSE (as a result of a responsibility transfer to the SPC from PRC), and although the technical training area has been doubled in manpower (from 27 to 56), a comparison of the two reference periods shows a drop of 85 in equivalent manpower (553 vs. 638) and 33 in headcount (548 vs. 581).

This reduction was attributed largely to the savings based on increased automation (realized and projected) and consolidation of parts inventory from 16 sites to the new facility. Other contributors to the reduction include the elimination of Vandenberg procurement support, the use of bulk purchases, and paperwork flowtime reductions by changing the NASA contracting officer approval dollar threshold to \$100 thousand from the previous \$25 thousand level.

A manpower bottoms-up analysis of logistics is shown in Table 7-18. Table 7-19 details a Logistics breakdown by department.

Figure 7-10.- Logistics organizational chart.

TABLE 7-18.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS LOGISTICS

		PRE-51L	•	FY199	-	DELTA	
NO. ORGANIZATION:	OVERTIME RATE	RVE HEADCOUNT	AVE EP	AVE HEROCOUNT	AVE EP	AVE HEROCOUNT	AME EP
40-XX LOGISTICS	1.10	581 ======	======= 638 ======	======================================	553	-33	-84
40-0X DIR, LOGISTICS	1.04	41	42	21	21	-20	-21
40-01 DIR, LOGISTICS 40-02 LOGISTICS OPERATIONS 40-03 LOGISTICS SUPPORT 40-10 PLANS, SYS & RUDITS		4 0 2 35	4 0 2 36	15 2 4 0	15 2 4 0	11 2 2 -35	11 2 2 -36
40-3X SUPPLY SUPPORT	1.13	298	336	237	239	-61	-96
40-30 Mgr, Supply Support 40-31 Inventory Hanagement 40-32 Storage & Distribution 40-33 Shuttle Process Support 40-34 Logs Spt, Ground Ops		7 56 102 105 29	6 63 115 118 32	8 0 91 112 26	8 0 92 113 26	-11 7	0 -63 -23 -5 -5
40-4X LOGISTICS ENGINEERING	1.04	85	88	131	132	46	44
40-40 Mgr, Logs Engineering 40-41 Inventory Mgt 40-42 Logistics Eng Supt	5 6 6 8 7	3 43 39	3 45 41	4 67 60	4 68 61	1 24 21	1 23 20
40-50 PROCUREMENT	1.10	65	72	51	52	-14	-20
40-60 TRANSPORTATION	1.10	65	72	52	53	-13	-19
40-70 TECHNICAL TRAINING	1.05	27	29	56	57	29	28

TABLE 7-19.- LOGISTICS BREAKDOWN BY DEPARTMENT

DEPARTMENT: 40-01,02,03

NAME: DIR, LOGISTICS DIR, LOGISTICS OPERATIONS DIR, LOGISTICS SUPPORT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

MANAGER, STAFF

MANAGEMENT OF DIRECTORATE

- ENSURE COMPLIANCE TO THE OVERALL LOGISTICS

SUPPORT PLAN

MANAGER, STAFF

MANAGEMENT OF LOGISTICS OPERATIONS

- DIRECT AND MANAGE SUPPLY SUPPORT AND

TRANSPORTATION ACTIVITIES

MANAGER, STAFF

MANAGEMENT OF LOGISTICS SUPPORT

- DIRECT AND MANAGE PROCUREMENT, LOGISTICS ENGINEERING AND TECHNICAL TRAINING

ACTIVITIES -DIRECT PROPERTY ADMINISTRATION

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

O DISSOLVED DEPT 40-10 PLANS, SYS & AUDITS

DELTA: -20

TABLE 7-19 .- CONTINUED

DEPARTMENT: 40-30, 32, 33, 34

NAME: MGR, SUPPLY SUPPORT
MGR, STORAGE & DISTRIBUTION
MGR, SHUTTLE PROCESS SUPPORT
MGR, LOGISTICS SUPPORT - GROUND OPS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

WAREHOUSING

RECEIVING

MINILOAD OPERATIONS, MOD KITTING, POL OPERATION, CENTRAL WAREHOUSE SUPPORT, BENCH STOCK SUPPORT

VEHICLE PROCESSING SUPPORT AREA

SUPPORT
PROCESSING ORBITER MODIFICATIONS/FLIGHT KITS,
HARDWARE DISPOSITION AREA OPERATIONS,
COMPUTER TERMINAL OPERATIONS, FLIGHT SPARES
WAREHOUSING/RECEIVING OPERATIONS,
MATERIAL RECEIVING DOCK OPERATIONS, MATERIAL
INCHECKING, MATERIAL/COMPUTER MESSAGE MATCH
OPERATIONS
PROCESS PMRs TO SUPPORT ORBITER PROCESSING
RECEIVE, STORE, ISSUE TEMPORARILY REMOVED
FLIGHT HARDWARE
PROCESS PMRs TO SUPPORT ORBITER PROCESSING

VAB HIGH BAY II SUPPORT OPERATIONS

MSC OPERATIONS (SHUTTLE AND GROUND OPERATIONS SUPPORT)

PROCESS PMRs TO SUPPORT ORBITER PROCESSING GSE PROCESSING, SUPPORT EQUIPMENT MOVE AUTHORIZATION PROCESSING, SHELF LIFE CONTROL

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

REDUCTION BASED IN PART ON INCREASED AUTOMATION. EITHER IN WORK OR PLANNED

1. CONSOLIDATION OF INVENTORY IN ONE LOCATION FROM 16 SITES DURING LATE B5/EARLY 86
ALLOWED REDUCTION IN PERSONNEL REQUIRED TO MAN THE SEVERAL VS THE ONE LOCATION.

2. MARHOUR PRODUCTIVITY RESULTED FROM:
O CONSOLIDATION REDUCED TIME REQUIRED TO STORE, RETRIEVE, ISSUE ANY GIVEN PART.
O INSTALLATION OF AUTOMATED, STORAGE & RETRIEVAL SYSTEM, CONVEYORS, NEW GUIDED FORKLIFTS WITH RF TERMINALS, THE LOGISTICS AUTOMATED STORAGE SYSTEM AND ENHANCEMENT OF AUTOMATED PROCUREMENT SYSTEM ALL REDUCED MANHOURS WHILE HANDLING HIGHER VOLUMES.

DELTA: -61

DEPARTMENT: 40-40, 41, 42

NAME: MGR. LOGISTICS ENGINEERING MGR, INVENTORY MANAGEMENT MGR, LOGISTICS ENGR SUPT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVISIONING, RESEARCH, & IDENTIFICATION

CATALOG GSE ACTIVITIES, MAINTENANCE ACTIVITIES BUILD OR MODIFY ALL SPC KIMS DATA BASE RECORDS

STOCK CONTROL/INVENTORY MANAGEMENT

KIMS CONTROL ACTIVITIES. INVENTORY CONTROL POINT MANAGEMENT, DATABASE MAINTENANCE

REPARABLE ASSET MANAGEMENT

MONITOR DUE-IN-REPAIR (DIR), DUE-IN-EXCHANGE, AND DUE-IN-CONTRACTOR ACTIVITIES

LOG, SCREEN, RESEARCH, AND TAG NEW CONTROLLED

EQUIPMENT RECORDS

PROPERTY RECEIPTS

MODIFICATION ASSESSMENT/PROCESSING

PROVIDE LOGISTICS ENGINEERING TECHNICAL INTERFACE/SUPPORT TO ENGINEERING AND **OPERATIONS**

PRODUCT SUPPORT MANAGEMENT

ASSURE REQUIREMENTS DEFINITION AND ASSETS AVAILABILITY FOR SUPPORT OF FLIGHT VEHICLE FLEMENTS

INTERNAL AUDIT AND INVENTORY

COORDINATE INTERNAL AUDITS AND PROPERTY MANAGEMENT SURVEYS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

KSC DESIGN ENGRG PREVIOUSLY PERFORMED ANALYSES AND PREPARED RECOMMENDED SPARE PARTS DOCUMENT FOR SPC LOGISTICS. THIS MUST NOW BE PERFORMED BY LOGISTICS ENGRG FOR ALL REPLACEMENT HARDWARE, NEW SYSTEMS AND MODIFICATIONS.(+3) THE ADDITION IS AT LEAST 11 PERSONNEL FOR THE LOAD ANTICIPATED.(+11) IN ADDITION, LOGISTICS MGMT RESPONSIBILITY FOR ALL DEVELOPMENT CENTER/CONTRACTOR GSE HAS BEEN TRANSFERRED TO SPC.(+32)

DELTA: +46

TABLE 7-19 .- CONTINUED

DEPARTMENT: 40-50

NAME: MGR, PROCUREMENT

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PURCHASING/SUBCONTRACTS

SUPPORT LSOC AND ITS SUBCONTRACTORS BY PROCUREMENT OF SUPPLIES, MATERIALS AND EQUIPMENT

ACT AS CENTRAL CONTROL POINT FOR ALL CONTRACTS WITH VENDORS/SUPPLIERS FOR NEGOTIATION AND AWARD OF PURCHASE ORDERS

MANPOWER DRIVEN BY NUMBER OF 11NE-1TEMS AND VOLUME OF PURCHASE REQUESTS

PROCUREMENT ADMINISTRATION

PROVIDE ADMINISTRATIVE/CLERICAL SUPPORT TO PURCHASING AND SUBCONTRACTS PROFESSIONALS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

VLS WORK PREVIOUSLY DONE IN PART BY SPC PROCUREMENT HAS BEEN ELIMINATED PROFICIENCY HAS INCREASED DUE TO MATURITY AND REPETITION IN SOME BUYS FOR PARTS ON SITE MAINTENANCE, ETC, AND A DECREASE IN NON STOCK/LISTED BUYS WHICH ARE MANPOWER INTENSIVE SEVERAL BPAS HAVE REDUCED MULTIPLE BY ACTIVITIES

ITEMS REQUIRING NASA CONTRACTING OFFICER APPROVAL DEMINISHED WHEN \$ LIMIT RAISED FROM \$25K TO \$100,000

DELTA: -14

DEPARTMENT: 40-60

NAME: MGR, TRANSPORTATION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FREIGHT TRAFFIC

PREFARE FROM SOURCE DOCUMENTS COMMERCIAL OR GOVERNMENT BILLS OF LADING

PACKAGING/SHIPPING

DETERMINE PROPER FREIGHT CLASSIFICATIONS

PACK/CRATE OUTBOUND SHIPMENTS IN ACCORDANCE WITH APPLICABLE SPECIFICATIONS

RESPONSIBLE FOR DELIVERIES OF WAREHOUSE

DELIVERY

DIRECT DELIVERIES OF PREMIUM MODE SHIPMENTS

VEHICLE OPERATIONS

MAINTAIN MANAGEMENT SYSTEM TO PROVIDE TECHNICAL SUPERVISION TO ENSURE THE MOST ECONOMICAL AND EFFECTIVE UTILIZATION OF MOTOR VEHICLES AND

MAINTENANCE SCHEDULES

ARRANGE ALL TRAVEL REQUIREMENTS

TRANSPORTATION

TRAVEL

MANPOWER REQUIREMENTS DEPENDENT ON INBOUND/OUTBOUND

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

THE ENTIRE DECREASE IS ATTRIBUTED TO CONSOLIDATION OF STORAGE NEAR THE WORKPLACE (LC39) THEREBY DECREASING DELIVERY TIME. MOVEMENT OF TILE PROCESSING "BACKSHOP" ADJACENT TO THE OPF ALLOWS TECHNICAN DELIVERY BY HAND IN LIEU OF BY TRANSPORTATION.

DELTA: -13

TABLE 7-19.- CONTINUED

DEPARTMENT: 40-70

NAME: MGR. TECHNICAL TRAINING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

COURSE DEVELOPMENT

NEW COURSES ARE REQUESTED AS OPERATIONAL

REQUIREMENTS ARE DICTATED

INSTRUCTION

INSTRUCTORS ARE REQUIRED TO ACCOMMODATE A

MULTI-SHIFT SCHEDULE

-CERTIFICATION PROGRAM

TRAINING REQUIREMENTS RECOMMENDED BY SPC MANAGEMENT ARE APPROVED AND ENFORCED BY THE CERTIFICATION BOARD

SPECIAL PROJECTS

TRAIN NASA PERSONNEL

NEW HIRE/RE-HIRE TRAINING

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

FINDINGS DICTATED:

INDINGS DICTATED:

DEVELOPMENT CENTER/CONTRACTOR COORDINATION, REVIEW & REVISION OF APPROXIMATELY 200 COURSES
SIGNIFICANT INCREASE IN THE NUMBER OF TECHNICIAN/INSPECTOR CERTIFICATIONS REQUIRED & THE
FREQUENCY OF RECERTIFICATION
THE ENTIRE WORKFORCE REQUIRES TRAINING OR RETRAINING - REHIRES APPROXIMATELY 3 WEEKS
AND NEW HIRES APPROXIMATELY 5 WEEKS
APPROXIMATELY 189 NEW COURSES ARE IDENTIFIED + MANUALS
NASA EMPLOYEES WILL NOW TAKE SPC TRAINING

7.11 50-XX SAFETY, RELIABILITY, MAINTAINABILITY, AND QUALITY ASSURANCE

In the aftermath of STS 51-L, both NASA and the SPC were criticized for the lack of rigorous SRM&QA oversight of processing operations. In the initial SPC contract (C.O. 143) proposal for the option period, LSOC proposed increasing the headcount level to one which generally reflected the work activity prior to STS 51-L, i.e., reducing overtime. This level of 671 for FY 1990 was also reflected in the KSC POP 87-1 and 87-2 submittals, even though in the interim period KSC and LSOC agreed that an increase in headcount to 779 was desirable. The manpower justifications presented to the review team, however, only reflected the 671 headcount.

Prior to STS 51-L, the LSOC and MTI staffing for this function numbered 565, of which 471 were in Reliability Maintainability and Quality Assurance (RM&QA). (The comparable number for the pre-SPC incumbents was 637, excluding overtime.) The pre-STS 51-L overtime level in RM&QA overall was 18 percent, yielding an equivalent level of 555 (481 LSOC, 74 MTI). The current, revised plan for FY 1990 for RM&QA amounts to 670 in equivalents (663 headcount). The major areas of increase are in LSOC quality control (+63), LSOC quality engineering (+28), and LSOC reliability/maintainability (+17), and MTI quality control (+15). (Redistributions of management personnel (-7) into the organizations bring the total difference to plus 115.)

One element of the increased staffing is related to changing QC inspector to technician ratios. In the OPF, the ratio is targeted for 1:3.5 from the pre-STS 51-L ratio of 1:3.8, a relatively minor change. (The comparable pre-SPC ratios were 1:3 for the Orbiter and 1:3.5 for tile work.) For the pad/MLP/LCC operations, the change is to a 1:5 ratio from 1:6.7. The QC for support operations will go to 1:12.5 from 1:16.9. In total, the number of inspectors would increase from the pre-STS 51-L headcount of 304 to 361 by September 1988 and 383 by September 1989. (Note that the actual onboard strength in January 1986 was 232 inspectors.)

The rationale for the above change was based on both the new OMRSD inspection requirements (Nondestructive Evaluation (NDE), structural/zonal, Tile) which in the OPF, for example, are estimated to amount to a 30 percent increase, and the quality support needed for paper review and closeout prior to key milestone reviews.

In quality engineering (QE), the increases were justified by (1) having an improved problem reporting and corrective action (PRACA) system (+15); (2) corollary increases in QE for changes in other organizations, i.e., more documents to review because of the 30% increase in OMRSD requirements, having to do skill certifications, and added inspection buy points (+10); (3) X-ray evaluations for structural/zonal inspections (+3); and improvements to the supplier quality control program (+2).

In the area of reliability and maintainability, the increase was associated with the higher levels of ESR's requiring safety assurance analyses, PRACA inputs, and Failure Modes and Effects Analysis (FMEA) and critical items

list (CIL) reviews. The justification for the additional 10 persons for FMEA/CIL reviews of all KSC GSE was questionable, since these reviews are being carried out presently, and their continuation into the FY 1990 timeframe doesn't appear necessary.

The Morton Thiokol QA/QE increase of 15 E/P's was associated with new Nondestructive Test (NDT) and NDE activities and precision measurements, increased laboratory testing and evaluations, and the additional inspections required during ET and SRB processing and, particularly, in the SRB disassembly operations in Hangar AF.

A Safety, Reliability, Maintainability, and Quality Assurance organizational chart is shown in Figure 7-11. An SRM&QA manpower bottoms-up analysis is shown in Table 7-20, and Table 7-21 is a breakdown by department.

Figure 7-11.- SRM&QA organizational chart.

TABLE 7-20.

SPC MANPOWER DATABASE BOTTOMS-UP ANALYSIS SRM&QA

			PRE-51L		FY199	- :	DELT	-
NO.	ORGANIZATION:	OVERTIME RATE	AVE HEROCOUNT	AVE EP	AVE HEADCOUNT	AVE EP	AVE HEADCOUNT	AVE EP
50-XX	**************************************	1.17	*====== 489 =======	571	======================================	678	182 225====	107
50-01	SRM&OA DIRECTORATE	1.04	12	12	13	13	1	1
52-XX	SAFETY	1.12	69	78	83	84	14	6
52-10	Director's Office Lockheed SF Engineering Lockheed SF Operations	1.01 1.05 1.20	8 25 36	8 26 43	6 34 43	6 34 43	-2 9 7	-2 8 0
51-XX	RH&OA	1.18	408	481	575	581	167	99
51-22 51-1× 51-21	Management Rel/Maintainability Lockheed Quality Control Lockheed Qual Engineering RM40A		5 43 306 50 4	6 51 361 59 5	418	2 68 422 87 2	24 112 36	-4 17 61 28 -3
51-17	LOCKHEED OC	1.18	306	361	418	422	112	61
51-11 51-12 51-13	D LOCKHEED OA MGMT Orbiter OC Shuttle OC Support OC FIE H/H OC		3 90 83 57 73	4 106 98 67 96		2 112 111 78 119	21 27 20	-2 6 13 11 33

TABLE 7-21.- SRM&QA BREAKDOWN BY DEPARTMENT

DEPARTMENT: 50-01

NAME: S, R. M, & QA DIRECTORATE

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE OVERALL MANAGEMENT AND DIRECTION DIRECTION FOR S, R, M, AND QA OPERATIONS

TRAINING/CERTIFICATION

AT KSC AND VLS.

SPI/MD REVIEW

INCLUDES OPERATIONS MANAGEMENT STAFF

SPC STAMP PROGRAM

SPC AUDITS/SURVEYS

BUDGETS/RESOURCES

PERSONNEL ACTIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INTERNAL REDISTRIBUTION OF STAFF PERSONNEL

DELTA: +1

TABLE 7-21.- CONTINUED

DEPARTMENT: 51-01

NAME: R. M. & QA DIRECTOR/SEC

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ORGANIZE, STAFF AND DIRECT THE R, M, AND QA FUNCTION TO ACHIEVE COMPLIANCE WITH CONTRACTUAL REQUIREMENTS

"ON CALL" 24 HRS/DAY 7 DAYS/WEEK

ONE SHIFT ON CENTER

(R, M, & QA DIRECTOR AND SECRETARY)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INTERNAL REDISTRIBUTION OF STAFF PERSONNEL

DELTA: -3

DEPARTMENT: 51-10

NAME: QUALITY CONTROL DIVISION MANAGER

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DETERMINE, ESTABLISH, AND MANAGE QUALITY CONTROL ACTIVITIES IN ACCORDANCE WITH NASA REQUIREMENTS AND LSOC POLICY.

(DIVISION MANAGER AND SECRETARY)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

DELTA: -1

TABLE 7-21.- CONTINUED

DEPARTMENT: 51-11

NAME: ORBITER QUALITY CONTROL

(OPF HIGH BAY 2)

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PERFORM INSPECTIONS/TESTS FOR ORBITER FLIGHT HARDWARE

TECHNICIAN/INSPECTOR RATIOS

ORBITER TURNAROUND

INCREASE IN INSPECTION CRITERIA

OMRF ACTIVITIES
TEST PROCEDURES OFF-SITE LANDING/FERRY OPERATIONS
NOE INSPECTIONS
DESERVICING/SCAPE NDE REQUIREMENTS STRUCTURAL/ZONAL INSPECTION REQUIREMENTS

CARGO SUPPORT SYSTEM TESTING

MOD REQUIREMENTS

MOD INSPECTIONS PRE-FLIGHT INSPECTIONS
PAYLOAD BAY SERVICING
TILE PROCESSING QUALITY PAPER REVIEW TEAM ACTIVITIES

STRUCTURAL/ZONAL INSPECTIONS

7/3 SHIFTING/1% OT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDITIONAL INSPECTION REQUIREMENTS (APPX 30%);
STRUCTURAL INSPECTION REQUIREMENTS AND PROPER REVIEW TEAM FUNCTIONS
REDUCE OVERTIME WITH SUPPLEMENTAL MANPOWER

DEPARTMENT: 51-12

NAME: SHUTTLE QUALITY CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE QUALITY INSPECTION FOR THE FOLLOWING

FUNCTIONS:

7/3 SHIFTING/1% OT

LAUNCH CONTROL CENTER TESTING OPERATIONS

TECHNICIAN/INSPECTOR RATIO

PAD A/PAD B VEHICLE TESTING OPERATIONS

REDUCTION (FROM 6.7:1 TO APPX 5:1)_

INCREASED INSPECTION REQUIREMENTS

PAD A/PAD B FACILITY MAINTENANCE

POST LAUNCH ASSESSMENTS

PAPER REVIEW TEAM ACTIVITY

FACILITY MODIFICATION (PAD A/B)

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDITINAL INSPECTION REQUIREMENTS, TECHNICIAN/INSPECTOR RATIO REDUCTION AND REDUCTION OF OVERTIME VIA SUPPLEMENTAL MANPOWER.

DELTA: +27

TABLE 7-21.- CONTINUED

DEPARTMENT: 51-13

NAME: SUPPORT QUALITY CONTROL

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE QUALITY CONTROL FOR THE FOLLOWING FUNCTIONS:

TECHNICIAN/INSPECTOR RATIO (REDUCTION FROM 16.0:1 TO APPX 12.5:1)

RECEIVING INSPECTION ON FLIGHT HARDWARE COORDINATE CHEMICAL/PHYSICAL

ANALYSIS REQUIREMENTS SHUTTLE ORDNANCE INSPECTIONS 7/3 SHIFTING AT 1% OVERTIME

VALIDATE PRIORITY SPARES IN ALL

LOGISTICS STORAGE AREAS SURVEILLANCE INSPECTIONS INSPECT RETURNED PARTS TAG MATERIALS

WAREHOUSE INSPECTIONS

CALIBRATION ACCOUNTABILITY ON ALL

TEST EQUIPMENT

SHOP/LABS INSPECTION REQUIREMENTS MLP OPERATIONS

MICROWAVE SCANNING BEAM LANDING SYSTEM OPERATIONS

INCREASED INSPECTION REQUIREMENTS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INCREASED INSPECTION REQUIREMENTS: AND MANNING REQUIRED TO REDUCE OVERTIME

DEPARTMENT: 51-14

NAME: ORBITER QUALITY CONTROL (OPF HIGH BAY 1)

FUNCT (ON/TASK

MANPOWER DRIVER (SKILLS)

PERFORM INSPECTINS/TESTS FOR:

TECHNICIAN/INSPECTOR RATIOS INCREASED INSPECTION CRITERIA

ORBITER FLIGHT HARDWARE ORBITER TURNAROUND OMRE ACTIVITIES
TEST PROCEDURES

NDE REQUIREMENTS

OFF-SITE LANDING/FERRY OPERATIONS

STRUCTURAL/ZONAL INSPECTION REQUIREMENTS

NDE INSPECTIONS DESERVICING/SCAPE CARGO SUPPORT SYSTEM TESTING MOD INSPECTIONS

QUALITY PAPER REVIEW TEAM ACTIVITIES

PRE-FLIGHT INSPECTIONS PAYLOAD BAY SERVICING

TILE PROCESSING STRUCTURAL/ZONAL INSPECTIONS 7/3 SHIFTING/1% OVERTIME

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

ADDITIONAL INSPECTION REQUIREMENTS (APPX 30%)
STRUCTURAL INSPECTION REQUIREMENTS AND PAPER REVIEW TEAM ACTIVITIES
REDUCE OVERTIME WITH SUPPLEMENTAL MANPOWER

DELTA: +45

TABLE 7-21.- CONTINUED

DEPARTMENT: 51-20

NAME: R. M. & QA ENGINEERING DIVISION

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE MANAGEMENT/DIRECTION FOR RELIABILITY, MAINTAINABILITY AND QUALITY ENGINEERING FUNCTIONS DIVISION MANAGER AND SECRETARY

5 DAYS/1 SHIFT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

INTERNAL REDISTRIBUTION OF STAFF PERSONNEL

DELTA: -2

UE PARTMENT: 51-21

NAME: QUALITY ENGINEERING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PROVIDE QUALITY ENGINEERING FOR THE

FOLLOWING FUNCTIONS:

EVALUATION OF GROUND SUPPORT EQUIPMENT

DEVELOP/OPERATE TREND ANALYSIS/RECURRENCE CONTROL AND PROBLEM ASSESSMENT PROGRAM

IDENTIFY INSPECTION POINTS IN TECHNICAL OPERATIONS PROCEDURES

REAL-TIME MRB/SITE SUPPORT

READ/INTERPRET X-RAYS OF FLIGHT AND SUPPORT EQUIPMENT

PROVIDE ACCEPT/REJECT CRITERIA FOR PROCESSING DOCUMENTATION

PERFORM QUALITY PERFORMANCE MEASUREMENT **ACTIVITIES**

FACILITATE SUPPLIER CONTROL ACTIVITIES AND PROGRAM DEVELOPMENT

INCREASED OMRS REQUIREMENTS

PROCESS ENGINEERING DOCUMENTATION OUTPUT INCREASE

7/3 SHIFT SLIE SUPPORT

INCREASED NOT ACTIVITIES

INCREASED RECURRENCE CONTROL ACTIVITIES

INCREASED CORRECTIVE ACTIONS AND PROBLEM

ASSESSMENT ACTIVITIES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

1) BASED ON POST 51-L STUDIES, AN IMPROVED PROBLEM ASSESSMENT/CORRECTIVE ACTION SYSTEM WAS DEVELOPED IN ORDER TO PLACE PROPER EMPHASIS ON PROBLEM TRACKING AND REPORTING IN ORDER ALLOW SUFFICIENT CORRECTIVE ACTION. (+15)

2) BASED ON INCREASED OMRSD REQUIREMENTS (APPROX. 30%), ADDITIONAL QUALITY ENGINEERS ARE REQUIRED TO REVIEW PROCESS ENGINEERING DOCUMENTATION FOR APPLICATION OF OMRSD REQUIREMENTS, SKILL CERTIFICATION AND INSPECTION BUY POINTS. DOCUMENTATION REVIEW VOLUME HAS INCREASED SIGNIFICANTLY BASED ON THE BUILDUP OF PROCESS ENGINEERING. (16)

3) ADDITIONAL STRUCTURAL/ZONAL INSPECTION REQUIREMENTS CAUSED AN INCREASE IN QUALITY ENGINEERING FOR X-RAY EVALUATION AND SUPPORT FOR QUALITY INSPECTION. (DRAWING INTERPRETATION/DATA ANALYSIS) (+3)

4) THE SUPPLIER QUALITY CONTROL PROGRAM HAS BEEN IMPROVED/UPDATED TO ENSURE THE PROPER QUALIFICATION OF DELTA.

DELTA: +36 FIIGHT HARDWARE (+2)

TABLE 7-21.- CONTINUED

DEPARTMENT: 51-22

NAME: RELIABILITY, MAINTAINABILITY ENGRG

INCREASED QUALITY DATA CENTER ACTIVITIES IN SUPPORT OF

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

FLOOR OPERATIONS

PROVIDE RELIABILITY, MAINTAINABILITY
ENGINEERING FOR THE FOLLOWING FUNCTIONS:
PROPOSED SPC DESIGNS FOR GROUND SUPPORT
EQUIPMENT AND FACILITIES
DEVELOP/MAINTAIN QUALITY DESIGN REVIEW
CHECKLISTS

DETERMINE CRITICALITY OF KSC EQUIPMENT AND FACILITIES PERFORM FAILURE MODE EFFECT ANALYSES

ANALYSES
IDENTIFY CRITICAL SINGLE FAILURE POINTS AND
PREPARE ACCEPTANCE RATIONALE
PREPARE/PUBLISH SYSTEM ASSURANCE ANALYSES
ASSURE DESIGN CHANGES TO SYSTEMS AND FACILITIES
DO NOI COMPROMISE SYSTEM RELIABILITY
PREPARE PUBLISH CRITICAL ITEMS LIST/ASSURE
INCORPORATION OF CIL REQUIRED MAINTENANCE
ACTIONS INTO THE GSE OMRSD
OPERATE/MAINTAIN QUALITY DATA CENTER

INCREASED DATA REQUIREMENTS FOR LSS

DESIGN ENGINEERING OUTPUT INCREASES INCREASED LEVEL OF CIL/OMRSD UPDATES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

1) ADDITIONAL DESIGN REVIEWS ARE REQUIRED DUE TO RETURN TO FLIGHT STATUS MODIFICATIONS AND TO PROVIDE SUPPORT FOR 100+ ADDITIONAL DESIGN ENGINEERS (+9)
RESUBMISSION OF FMEAS/CILS IS REQUIRED, PER LEVEL II DIRECTION, FOR ALL KSC GROUND SUPPORT EQUIPMENT

(+10)

PRACA DATA BASE INPUT REQUIREMENT INCREASED DUE TO FLIGHT HARDWARE MODIFICATION AND RELATED SHOP FLOOR ACTIVITY (QUALITY DATA CENTER) (+5)

DEPARTMENT: 52-01

NAME: SAFETY DIRECTORATE

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

ORGANIZE, STAFF AND DIRECT THE SPC SAFETY FUNCTION TO ACHIEVE COMPLIANCE WITH SPC CONTRACTURAL REQUIREMENTS.

SUPPORT OF 24 HOUR/DAY, 7 DAYS A WEEK TO STS PROCESSING ACTIVITIES

HAZARDOUS WASTE MANAGEMENT

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

REDISTRIBUTION OF STAFF SUPPORT

DELTA: -2

TABLE 7-21.- CONTINUED

DEPARTMENT: 52-10

NAME: SAFETY ENGINEERING

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

PERFORM THE FOLLOWING TASKS:

CONTRACTUAL REQUIREMENTS TO PERFORM SCHEDULED AND REAL-TIME SUPPORT OF REFERRED FUNCTIONS AND TASK

- HAZARD ANALYSIS

- SUPPORT OF SUSTAINING ENGINEERING ACTIVITIES DESIGN REVIEW CONFIGURATION MANAGEMENT SUPPORT (SAFETY ASSESSMENTS)
- RISK ASSESSMENT
- OPERATIONAL READINESS INSPECTIONS
- INDUSTRIAL SAFETY
- INDUSTRIAL HYGIENE 0
- PROCEDURE REVIEW

TIMELY HAZARD IDENTIFICATION AND RESOLUTION

APPROXIMATELY 19,000 PROCEDURES ANNUALLY THAT REQUIRE SAFETY REVIEW

TIME SUPPORT OF SUSTAINING ENGINEERING

ACTIVITIES

ASSURE COVERAGE AND COMPLIANCE WITH SAFETY REQUIREMENTS AND SPECIFICATIONS

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- INCREASE IN HAZARD ANALYSIS ACTIVITIES PER LEVEL II DIRECTION (HAZARD RE-EVALUATION)
- INCREASE IN NUMBER OF DESIGN REVIEW ACTIVITIES ASSOCIATED WITH RETURN TO FLIGHT MODS SUPPORT OF CRITICAL SINGLE FAILURE POINT REVIEWS ADDITIONAL SUPPORT OF SPECIAL COMMITTEES/BOARDS IN SUPPORT OF 51-L FINDINGS 0

TABLE 7-21.- CONCLUDED

DEPARTMENT: 52-20

NAME: SAFETY OPERATIONS

FUNCTION/TASK

MANPOWER DRIVER (SKILLS)

DIRECT SUPPORT TO ALL PROCESSING FACILITIES (OPF, HMF, SLF, VAB, PAD A/B AND CONTINGENCY LANDING SITES)

O SUPPORT OF MULTIPLE FACILITIES AND SIMULTANEOUS OPERATIONS IN SUPPORT OF STS PROCESSING

- MONITOR HAZARDOUS OPERATIONS
- DEVELOP SAFETY REQUIREMENTS FOR PRETEST BRIEFINGS FOR HAZAROUS OPERATIONS
 FACILITY SAFETY WALKDOWNS AND INSPECTIONS
 REAL-TIME REVIEW OF WORK AUTHORIZATION
- DOCUMENTS
- ESTABLISH AND MAINTAIN SAFETY CLEARANCES ASSOCIATED WITH HAZARDOUS OPERATIONS SUPPORT OF MISHAP INVESTIGATIONS TOXIC VAPOR CHECKS AND OTHER TYPE II

- ENVIRONMENTAL CHECKS
 PERFORM OPERATIONAL HAZARD ANALYSIS IN SUPPORT OF SYSTEM SAFETY ENGINEERING ACTIVITIES
- O SEVEN DAYS A WEEK, THREE SHIFTS PER DAY
- O INCREASED PROCESSING FACILITIES
- INCREASED HAZARDOUS OPERATIONS
- EXTENDED FACILITY MODIFICATION ACTIVITIES
- EXPANDED CONTINGENCY LANDING SITE

RESPONSIBILITIES

MANPOWER IMPACTS RESULTING FROM POST STS 51-L STUDIES

- O ADDITION OF OMRE FACILITY WHICH WILL REQUIRE FULL-TIME SAFETY COVERAGE

- ELIMINATE EXCESSIVE OVERTIME (@21-30%) DURING HIGH PEAK STS PROCESSING INCREASED REQUIREMENT FOR ON-SITE SAFETY COVERAGE EXPANDED REQUIREMENT TO COVER CONTINGENCY LANDING SITES DURING LAUNCH AND RECOVERY ACTIVITIES

SECTION 8 POTENTIAL THREATS TO PROJECTED MANNING LEVELS

During the course of discussions with various NASA and contractor personnel, certain threats against the projeted FY 1990 SPC manpower levels were identified. Below, categorized by organization, is a summary listing. It should be noted that in many cases more than one SPC organization mentioned the same threat.

8.1 GENERAL

- 1. The composite overtime assumption of 1 percent in FY 1990 is generally disbelieved. If 5 percent is required, approximately \$16 million in additional cost (~250 EP's) would be incurred.
- 2. Except in data systems and additional engineering support for closed-loop OMRSD's, whatever delta manpower is required for the Systems Integrity Assurance Program is not included.
- 3. The impact of design center involvement is not well-understood. SPC interaction with design centers may slow problem resolution and processing schedules.
- 4. Time allocations for accomplishing the Master Verification Plan test requirements are preliminary and may increase.

8.2 SUSTAINING ENGINEERING

- 1. The current backlog of engineering support requests approved through the Lockheed boards is approximately 1,000, with little likelihood with projected manning levels of reducing the backlog by significant amounts. (Note that the NASA/DE backlog count is higher (about 1,400 ESR's) since ESR's have to be approved by NASA prior to going to the SPC board.)
- 2. Facility/equipment drawings have excessive Engineering Orders (EO's). The acceptable engineering practice of no more than 8 to 10 EO's per drawing is being violated. Current manpower will not permit working the problem until after return to flight, due to manpower being applied to category 1 mods.

8.3 PROCESS ENGINEERING

1. Schedule impacts from design center involvement are unknown. PE assumed a 15% increase in manpower for jobs impacted by paper processing. Manpower covers only Work Authorization Documents (WAD's) that address criticality 1 items, not all WAD's. If schedule makeup pressure grows, using overtime to make up for lost time is likely.

- 2. PE personnel are currently attriting at higher rates than planned. If this continues, the cadre of experienced engineers will have to work higher overtime, and greater numbers of new hires will have to be brought on due to training requirements.
- 3. PE estimates do not include manpower requirements for the implementation of the Systems Integrity Assurance Program (SIAP).
- 4. PE plans to meet requirements for support to the workforce by using flex-time, a modified standard work week, and overtime at 5 percent. The 5 percent overtime is not included in current cost and manpower projections.

8.4 LOGISTICS

- 1. Support of aging ground systems and hardware requires, over time, increasing levels of logistics manpower. Failure to redesign and replace individual items which are marginally supportable now will increase the future workload.
- 2. Manpower projections are based in part on benefits being realized from automation projects not yet completed. Late completions or implementation problems will require delta manpower. (E.g., the Logistics Automated Storage System (LASS) will be tied in to the Kennedy Inventory Management Systems (KIMS) and the Rockwell Logistics Inventory Management Systems (LIMS)).
- 8.5 SAFETY, RELIABILITY AND QUALITY ASSURANCE
- 1. Manpower to support the activation of the OMRF is not included in current projections.
- 2. Manpower could increase due to
 - a. An increase in technician numbers, requiring the hiring of inspectors to maintain ratios.
 - b. An increase in process engineering document generation, leading to an increased quality engineering review workload.
 - c. An increased design engineering output, requiring more reliability engineering analyses.

8.6 MORTON THIOKOL OPERATIONS

1. Manpower projections were based on known requirements for processing times with the new overtime assumptions. Any changes to the hardware or processing methods may require additional manpower. Specifically, KSC did not include a provision for significant changes in KSC processing requirements for solid rocket motors.

8.7 OPERATIONS (OPF)

1. Manning levels are somewhat below STS 51-L equivalents, based on the assumption of improvements in processing support. The 1 percent overtime assumption is not regarded as credible. The introduction of more control points, training and certification requirements, and increased testing will slow OPF timelines. The response in the past to schedule slippages has been to augment the workforce through authorization of overtime. If overtime is to be held to low levels, additional manpower on the second and third shifts (assumed to be power-off shifts) will be needed.

8.8 SHUTTLE/PAYLOAD INTEGRATION

- 1. Optional services in the past were covered by overtime. If the customer wants a pathfinder operations, LSOC will have to support it with overtime or additional manpower.
- 2. DOD requirements for a launch on need (LON) are not in the staffing baseline.
- 3. Contamination control manpower may not be sufficient to support the increased demand for monitoring data by scientific and DOD payloads.

SECTION 9 FINDINGS

- The SPC manpower levels proposed for FY 1990 reflect both KSC's pre-STS 51-L processing experience and the significant changes in approach advocated by both internal and outside reviewers. To the extent that the threats (Section VIII) materialize, the estimates could be optimistic unless offsetting adjustments in approach can be implemented.
- b. The largest percentage of the manpower required to support the processing facilities is relatively fixed, activity-rate driven, and insensitive to flight rate changes. Over 60 percent of the workforce would be required to support even a minimum processing level operation (1 to 4 flights per year).
- c. The skill-mix changes in the workforce post-STS 51-L reflect an increased emphasis on engineering support, quality control, and the planning and control of work.
- d. Unplanned work and mod traffic levels have a dramatic effect on manpower levels, schedule, and/or quality. For a given manning level and quality control, the NSTS program should recognize that authorization of unplanned work can be expected to cause schedule slips.
- e. The manpower levels recommended in the KSC POP 87-1 and 87-2 submissions are 126 (headcount) lower than the 7,512 manning level resulting from negotiations between NASA and Lockheed. While the 7,512 level represents a significant increase from pre-STS 51-L equivalents, it is not conservative, and it is below the 8,000 level recommended by the managers of the LSOC departments.
- f. The KSC and LSOC personnel interviewed believe that the 1 percent overtime assumption is unrealistic and unattainable.
- g. The total impact of implementing design center involvement as stated in the Systems Integrity Assurance Program Plan has not been factored into the manpower estimates.
- h. The number of return to flight status (RTFS) mods, excessive EO's against drawings, and engineering support requests backlogged against facilities and GSE is of considerable concern. There is some doubt as to whether the current manpower levels, coupled with a lack of appropriate tools, in Sustaining Engineering can handle the traffic at a rate which would even hold the backlog at current levels, much less reduce the backlog.
- i. The proposed manpower levels do not provide a capability for full-up 7-day/3-shift operations except on a surge basis, and then only in critical path operations. The OPF is the only facility where critical path operations are planned to be conducted on a 7/3 basis. The third

shift and weekend shifts are not manned at equivalent levels to the power-on first and second shifts.

- j. KSC now recognizes that the pre-STS 51-L problems, documented by the Rogers Commission, The Estess Committee, and other reviewers, that tended to strain the workforce and degrade quality were largely a result of the assumption that the SPC contract would be able to "hold the line" until the mod traffic and unplanned work could be minimized as the operation evolved into a mature airline-type operation. This assumption has been discarded, and a continuing level of mods and unplanned work has been assumed for the future. However, it also assumed that the level of pre-flight test requirements mandated for the initial flights once operations resume will be markedly reduced in order to achieve the higher flight rates.
- k. Once KSC puts two vehicles in flow and a third in mod status, the facilities must be manned for critical path operations, and the flight rate will be determined by the work activity levels. Except for adding new facilities (a third OPF), a buildup of manpower relative to flight rate should not be treated as a variable.

SECTION 10 CONCLUSION

The conclusion of the team is that the revised manning levels are a result of a purposeful effort to add discipline to Space Shuttle processing.

It is felt that while this reflects additional conservatism by management, it is not at all Overly conservative, and it is consistent with the abandonment of the old philosophy of progressing to an airline-type operation.

APPENDIX A ACRONYMS

Computer aided design Computer aided engineering Central data subsystem Critical Items List contract manager representative Cost—plus award fee Calendar year
Design Engineering Direct equivalent persons Department of Defense Discrepancy report
Engineering Order Equivalent person Engineering Support Request External tank
Failure modes and effects analysis Fiscal year
Ground Support Equipment Grumman Technical Services, Inc.
Hyper Maintenance Facility
Kennedy Data Management Systems Kennedy Inventory Management System Kennedy Space Center
Logistics Automated Storage System Launch Control Center Logistics Inventory Management Sytem Launch on need Launch processing system Line replaceable unit launch site flow review Lockheed Space Operations Company launch team training simulator leave without pay

MD management directive MLP Mobile Launch Platform Modification mod MP management procedure Morton Thiokol, Incorporated MTI NDE Nondestructive evaluation NDT Nondestructive test National Space Transportation System NSTS Operational Intercommunications System OIS IMO Operation and Maintenance Instruction Operations and Maintenance Requirements Specification OMRS Operations and Maintenance Specification Document OMRSD OPF Orbiter Processing Facility Operation and maintenance M&0 Space Shuttle launch pad pad Public Affairs Office PAO PE Process Engineering POP program operating plan Process Planning and Control PP&C PR Problem report Problem reporting and corrective action PRACA Planning Research Corporation PRC Preparation. prep QA Quality assurance QC Quality control 10 Quality inspector RCN Requirements Change Notice Reliability Maintainability and Quality Assurance RM&QA RPS Record and playback system Return to flight RTF Return to flight status RTFS R&D Research and Development SDS Shuttle Data Systems System Integrity and Assurance Program SIAP Shuttle Processing Contract SPC Shuttle Processing Data Management System SPDMS SRB Solid rocket booster Solid rocket motor SRM Safety, reliability, maintainability, and quality assurance SRM&QA Safety, reliability, and quality assurance SR&QA Space Shuttle Vehicle VZZ Space Transportation System STS

TAT TPS T-0	Turnaround time Test Preparation Sheet Takeoff
USBI	United Services Booster Incorporated
VAB VLS	Vehicle Assembly Building Vandenberg Launch and Landing Site
WAD	Work Authorization Document

NASA/HOS M/R. H. Truly

NSTS-NASA HQS
B/M. L. Peterson
BFR/R. P. Schneider
M/A. D. Aldrich
ME/D. L. Winterhalter
MO/G. E. Krier
MOL/N. B. Starkey (20)
MP/J. P. Sheahan
F. S. Coe

NASA-KSC CD/F. S. McCartney CM/J. T. Conway GM/J. N. Harden (20) TM/T. E. Utsman R. B. Sieck G. T. Sasseen TP/C. D. Gay TV/J. E. Smith

NSTS-KSC MK/R. L. Crippen R. C. Lester

NASA-MSFC
DA/J. R. Thompson, Jr.
EE01/J. A. Lovingood
SA21/J. A. Lombardo
SA31/G. P. Bridwell
SA41/G. W. Smith
SA71/J. W. Kennedy

NSTS-MSFC SAO1/W. R. Marshall MM/J. M. Boze

USAF VAFB, WSMC ST/Lt. Col. T. G. Martin

JSC
AA/A. Cohen
AC/D. A. Nebrig
AC3/C. E. Charlesworth
AC4/G. W. S. Abbey
AC5/J. W. Young
BT2-TN2/T. S. Foster
CA/D. R. Puddy
CA/H. W. Hartsfield
CA/K. J. Bobko

CA7/R. W. Nygren
CB/D. C. Brandenstein
CB/J. C. Adamson (20)
CB/F. H. Hauck
DA/E. F. Kranz
EA/H. O. Pohl
FA/R. L. Berry
VA/R. A. Colonna
VA/D. M. Germany

NSTS-JSC
GA/R. H. Kohrs
GA/J. F. Honeycutt
GA2/J. B. Costello
GA3/M. E. Merrell
GM/D. C. Schultz
MJ/R. A. Thorson
TA/L. S. Nicholson
WA/R. W. Moorehead
WA/L. G. Williams
WA/T. T. Henricks

OMNIPLAN-Houston 17226 Mercury Drive Houston, Texas 77058 H. D. Buchanan (2)